About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2013 (2013), Article ID 210639, 7 pages
http://dx.doi.org/10.1155/2013/210639
Research Article

Estimation of True Serum Thyroglobulin Concentration Using Simultaneous Measurement of Serum Antithyroglobulin Antibody

1Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, 50 Samduk-dong 2-ga, Chung Gu, Daegu 700-721, Republic of Korea
2Department of Preventive Medicine, Kyungpook National University School of Medicine/Hospital, 50 Samduk-dong 2-ga, Chung Gu, Daegu 700-721, Republic of Korea

Received 30 November 2012; Revised 7 February 2013; Accepted 5 March 2013

Academic Editor: Eleonore Fröhlich

Copyright © 2013 Byeong-Cheol Ahn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. S. Cooper, G. M. Doherty, B. R. Haugen et al., “Revised American thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer,” Thyroid, vol. 19, no. 11, pp. 1167–1214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Reiners, M. Dietlein, and M. Luster, “Radio-iodine therapy in differentiated thyroid cancer: indications and procedures,” Best Practice and Research: Clinical Endocrinology and Metabolism, vol. 22, no. 6, pp. 989–1007, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Ahn, J. Seo, J. Bae, et al., “Effects of anti-thyroglobulin antibody on the measurement of thyroglobulin: differences between immunoradiometric assay kits available,” Korean Journal of Nuclear Medicine, vol. 39, no. 4, pp. 252–256, 2005.
  4. B. Ahn, J. Bae, S. Jeong, et al., “Influence of anti-thyroglobulin antibody on the measurement of thyroglobulin using the immunoradiometric assay,” Journal of Korean Society of Endocrinology, vol. 19, no. 1, pp. 42–47, 2004.
  5. M. Stanojević, S. Savin, D. Cvejić, A. Dukić, and S. Z. Simonović, “Correlation of thyroglobulin concentrations measured by radioimmunoassay and immunoradiometric assay and the influence of thyroglobulin antibody,” Journal of Immunoassay and Immunochemistry, vol. 30, no. 2, pp. 197–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. A. Spencer and J. S. LoPresti, “Technology Insight: measuring thyroglobulin and thyroglobulin autoantibody in patients with differentiated thyroid cancer,” Nature Clinical Practice Endocrinology and Metabolism, vol. 4, no. 4, pp. 223–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Aras, S. S. Gültekin, N. Ö. Küçük, and Y. Genç, “Is thyroglobulin the stronger indicator for progressive disease than the other conventional factors in same age patient groups with differentiated thyroid cancer?” Nuclear Medicine Communications, vol. 28, no. 12, pp. 907–913, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. N. Hoofnagle and M. H. Wener, “The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry,” Journal of Immunological Methods, vol. 347, no. 1-2, pp. 3–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Locsei, I. Szabolcs, K. Rácz, G. L. Kovács, D. Horváth, and E. Toldy, “Serum thyroglobulin antibody levels within or near to the reference range may interfere with thyroglobulin measurement,” Biochemical Medicine, vol. 22, no. 3, pp. 365–370, 2012.
  10. C. Spencer, S. Fatemi, P. Singer, J. Nicoloff, and J. Lopresti, “Serum basal thyroglobulin measured by a second-generation assay correlates with the recombinant human thyrotropin-stimulated thyroglobulin response in patients treated for differentiated thyroid cancer,” Thyroid, vol. 20, no. 6, pp. 587–595, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. E. L. Mazzaferri and R. T. Kloos, “Current approaches to primary therapy for papillary and follicular thyroid cancer,” The Journal of Clinical Endocrinology & Metabolism, vol. 86, no. 4, pp. 1447–1463, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Leboulleux, P. R. Schroeder, N. L. Busaidy et al., “Assessment of the incremental value of recombinant thyrotropin stimulation before 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging to localize residual differentiated thyroid cancer,” The Journal of Clinical Endocrinology & Metabolism, vol. 94, no. 4, pp. 1310–1316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. A. Spencer, M. Takeuchi, M. Kazarosyan et al., “Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma,” The Journal of Clinical Endocrinology & Metabolism, vol. 83, no. 4, pp. 1121–1127, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Madureira, S. Prazeres, M. S. Pedro, T. Pereira, A. P. Font, and M. J. Bugalho, “In vitro assays to test the interference of anti-thyroglobulin antibodies on thyroglobulin measurement,” Endocrine, vol. 33, no. 1, pp. 40–44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Chiovato, F. Latrofa, L. E. Braverman et al., “Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens,” Annals of Internal Medicine, vol. 139, no. 5, pp. 346–351, 2003. View at Scopus
  16. C. A. Spencer, “Clinical review: clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC),” The Journal of Clinical Endocrinology & Metabolism, vol. 96, pp. 3615–3627, 2011. View at Publisher · View at Google Scholar
  17. J. H. Seo, S. W. Lee, B. C. Ahn, and J. Lee, “Recurrence detection in differentiated thyroid cancer patients with elevated serum level of antithyroglobulin antibody: special emphasis on using 18F-FDG PET/CT,” Clinical Endocrinology, vol. 72, no. 4, pp. 558–563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Gao, Z. Yuan, Y. Yu, and H. Lu, “Mutual interference between serum thyroglobulin and antithyroglobulin antibody in an automated chemiluminescent immunoassay,” Clinical Biochemistry, vol. 40, no. 9-10, pp. 735–738, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Spencer, I. Petrovic, and S. Fatemi, “Current thyroglobulin autoantibody (TgAb) assays often fail to detect interfering TgAb that can result in the reporting of falsely low/undetectable serum Tg IMA values for patients with differentiated thyroid cancer,” The Journal of Clinical Endocrinology & Metabolism, vol. 96, no. 5, pp. 1283–1291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Berger, U. Friedrich, P. Knesewitsch, and K. Hahn, “Diagnostic 131I whole-body scintigraphy 1 year after thyroablative therapy in patients with differentiated thyroid cancer: correlation of results to the individual risk profile and long-term follow-up,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 3, pp. 451–458, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Latrofa, D. Ricci, L. Montanelli, et al., “Lymphocytic thyroiditis on histology correlates with serum thyroglobulin autoantibodies in patients with papillary thyroid carcinoma: impact on detection of serum thyroglobulin,” The Journal of Clinical Endocrinology & Metabolism, vol. 97, no. 7, pp. 2380–2387, 2012. View at Publisher · View at Google Scholar
  22. F. Latrofa, D. Ricci, L. Grasso et al., “Characterization of thyroglobulin epitopes in patients with autoimmune and non-autoimmune thyroid diseases using recombinant human monoclonal thyroglobulin autoantibodies,” The Journal of Clinical Endocrinology & Metabolism, vol. 93, no. 2, pp. 591–596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Latrofa, D. Ricci, L. Montanelli, et al., “Thyroglobulin autoantibodies in patients with papillary thyroid carcinoma: comparison of different assays and evaluation of causes of discrepancies,” The Journal of Clinical Endocrinology & Metabolism, vol. 97, no. 11, pp. 3974–3982, 2012. View at Publisher · View at Google Scholar