About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2013 (2013), Article ID 213234, 9 pages
http://dx.doi.org/10.1155/2013/213234
Review Article

Age-Related Changes in Trabecular and Cortical Bone Microstructure

1Department of Anatomy, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
2Department of Intelligent Image Information, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
3Nittai Jusei Medical College for Judo Therapeutics, 2-2-7 Yoga, Setagaya-ku, Tokyo 158-0097, Japan
4Seijoh University Graduate School of Health Care Studies, 2-172 Fukinodai, Tokai, Aichi 476-8588, Japan

Received 24 October 2012; Accepted 14 February 2013

Academic Editor: Ling-Qing Yuan

Copyright © 2013 Huayue Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions associated with aging, and age is an independent risk factor for osteoporotic fractures. With the development of noninvasive imaging techniques such as computed tomography (CT), micro-CT, and high resolution peripheral quantitative CT (HR-pQCT), imaging of the bone architecture provides important information about age-related changes in bone microstructure and estimates of bone strength. In the past two decades, studies of human specimens using imaging techniques have revealed decreased bone strength in older adults compared with younger adults. The present paper addresses recently studied age-related changes in trabecular and cortical bone microstructure based primarily on HR-pQCT and micro-CT. We specifically focus on the three-dimensional microstructure of the vertebrae, femoral neck, and distal radius, which are common osteoporotic fracture sites.