About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2013 (2013), Article ID 368970, 6 pages
http://dx.doi.org/10.1155/2013/368970
Research Article

Omentin-1 Stimulates Human Osteoblast Proliferation through PI3K/Akt Signal Pathway

Institute of Metabolism and Endocrinology, Second Xiang-Ya Hospital, Central South University, Changsha 410011, Hunan, China

Received 3 January 2013; Accepted 8 March 2013

Academic Editor: Guang-Da Xiang

Copyright © 2013 Shan-Shan Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. P. Poulos, D. B. Hausman, and G. J. Hausman, “The development and endocrine functions of adipose tissue,” Molecular and Cellular Endocrinology, vol. 323, no. 1, pp. 20–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Gustafson, “Adipose tissue, inflammation and atherosclerosis,” Journal of Atherosclerosis and Thrombosis, vol. 17, no. 4, pp. 332–341, 2010. View at Scopus
  3. M. Holecki and A. Wiȩcek, “Relationship between body fat mass and bone metabolism,” Polskie Archiwum Medycyny Wewnetrznej, vol. 120, no. 9, pp. 361–367, 2010. View at Scopus
  4. Y. Liu, C. Y. Song, S. S. Wu, Q. H. Liang, L. Q. Yuan, and E. Y. Liao, “Novel adipokines and bone metabolism,” International Journal of Endocrinology, vol. 2013, Article ID 895045, 2013. View at Publisher · View at Google Scholar
  5. G. A. Williams, Y. Wang, K. E. Callon et al., “In vitro and in vivo effects of adiponectin on bone,” Endocrinology, vol. 150, no. 8, pp. 3603–3610, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. K. N. Ealey, J. Kaludjerovic, M. C. Archer, and W. E. Ward, “Adiponectin is a negative regulator of bone mineral and bone strength in growing mice,” Experimental Biology and Medicine, vol. 233, no. 12, pp. 1546–1553, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. M. Bartell, S. Rayalam, S. Ambati et al., “Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice,” Journal of Bone and Mineral Research, vol. 26, no. 8, pp. 1710–1720, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. W. Hamrick, M. A. Della-Fera, Y. H. Choi, C. Pennington, D. Hartzell, and C. A. Baile, “Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice,” Journal of Bone and Mineral Research, vol. 20, no. 6, pp. 994–1001, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. H. S. Berner, S. P. Lyngstadaas, A. Spahr et al., “Adiponectin and its receptors are expressed in bone-forming cells,” Bone, vol. 35, no. 4, pp. 842–849, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Xie, L. Q. Yuan, X. H. Luo et al., “Apelin suppresses apoptosis of human osteoblasts,” Apoptosis, vol. 12, no. 1, pp. 247–254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Zhu, Y. Jiang, P. F. Shan et al., “Vaspin attenuates the apoptosis of human osteoblasts through ERK signaling pathway,” Amino Acids, vol. 44, no. 3, pp. 961–968, 2013. View at Publisher · View at Google Scholar
  12. X. H. Luo, L. J. Guo, L. Q. Yuan et al., “Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway,” Experimental Cell Research, vol. 309, no. 1, pp. 99–109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Schäffler, M. Neumeier, H. Herfarth, A. Fürst, J. Schölmerich, and C. Büchler, “Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue,” Biochimica et Biophysica Acta, vol. 1732, no. 1–3, pp. 96–102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Z. Yang, M. J. Lee, H. Hu et al., “Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action,” American Journal of Physiology, vol. 290, no. 6, pp. E1253–E1261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Yamawaki, J. Kuramoto, S. Kameshima, T. Usui, M. Okada, and Y. Hara, “Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells,” Biochemical and Biophysical Research Communications, vol. 408, no. 2, pp. 339–343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Yamawaki, N. Tsubaki, M. Mukohda, M. Okada, and Y. Hara, “Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels,” Biochemical and Biophysical Research Communications, vol. 393, no. 4, pp. 668–672, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Y. Duan, P. L. Xie, Y. L. Ma, and S. Y. Tang, “Omentin inhibits osteoblastic differentiation of calcifying vascular smooth muscle cells through the PI3K/Akt pathway,” Amino Acids, vol. 41, no. 5, pp. 1223–1231, 2011. View at Publisher · View at Google Scholar
  18. C. M. de Souza Batista, R. Z. Yang, M. J. Lee et al., “Omentin plasma levels and gene expression are decreased in obesity,” Diabetes, vol. 56, no. 6, pp. 1655–1661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Tohidi, S. Akbarzadeh, B. Larijani et al., “Omentin-1, visfatin and adiponectin levels in relation to bone mineral density in Iranian postmenopausal women,” Bone, vol. 51, no. 5, pp. 876–881, 2012. View at Publisher · View at Google Scholar
  20. H. Xie, P. L. Xie, X. H. Luo et al., “Omentin-1 exerts bone-sparing effect in ovariectomized mice,” Osteoporosis International, vol. 23, no. 4, pp. 1425–1436, 2012. View at Publisher · View at Google Scholar
  21. H. Xie, P. L. Xie, X. P. Wu et al., “Omentin-1 attenuates arterial calcification and bone loss in osteoprotegerin-deficient mice by inhibition of RANKL expression,” Cardiovascular Research, vol. 92, no. 2, pp. 296–306, 2011. View at Publisher · View at Google Scholar
  22. Y. S. Liu, Y. Lu, W. Liu et al., “Connective tissue growth factor is a downstream mediator for preptin-induced proliferation and differentiation in human osteoblasts,” Amino Acids, vol. 38, no. 3, pp. 763–769, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Q. Yuan, H. Xie, X. H. Luo et al., “Taurine transporter is expressed in osteoblasts,” Amino Acids, vol. 31, no. 2, pp. 157–163, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. L. J. Guo, H. Xie, H. D. Zhou, X. H. Luo, Y. Q. Peng, and E. Y. Liao, “Stimulation of RANKL and inhibition of membrane-type matrix metalloproteinase-1 expression by parathyroid hormone in normal human osteoblasts,” Endocrine Research, vol. 30, no. 3, pp. 369–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Moreno-Navarrete, V. Cataln, F. Ortega et al., “Circulating omentin concentration increases after weight loss,” Nutrition and Metabolism, vol. 7, article 27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. B. K. Tan, S. Pua, F. Syed, K. C. Lewandowski, J. P. O'Hare, and H. S. Randeva, “Decreased plasma omentin-1 levels in Type 1 diabetes mellitus,” Diabetic Medicine, vol. 25, no. 10, pp. 1254–1255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Y. Pan, L. Guo, and Q. Li, “Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes,” Diabetes Research and Clinical Practice, vol. 88, no. 1, pp. 29–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. J. Díez and P. Iglesias, “The role of the novel adipocyte-derived protein adiponectin in human disease: an update,” Mini-Reviews in Medicinal Chemistry, vol. 10, no. 9, pp. 856–869, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Matsuzawa, “Adiponectin: a key player in obesity related disorders,” Current Pharmaceutical Design, vol. 16, no. 17, pp. 1896–1901, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Chiarugi and T. Fiaschi, “Adiponectin in health and diseases: from metabolic syndrome to tissue regeneration,” Expert Opinion on Therapeutic Targets, vol. 14, no. 2, pp. 193–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Cornish, K. E. Callon, U. Bava et al., “Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo,” Journal of Endocrinology, vol. 175, no. 2, pp. 405–415, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Thommesen, A. K. Stunes, M. Monjo et al., “Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism,” Journal of Cellular Biochemistry, vol. 99, no. 3, pp. 824–834, 2006. View at Publisher · View at Google Scholar
  33. H. Xie, S. Y. Tang, X. H. Luo et al., “Insulin-like effects of visfatin on human osteoblasts,” Calcified Tissue International, vol. 80, no. 3, pp. 201–210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. L. J. Guo, T. J. Jiang, L. Liao, H. Liu, and H. B. He, “Relationship between serum omentin-1 level and bone mineral density in girls with anorexia nervosa,” Journal of Endocrinological Investigation, vol. 2012, 2012. View at Publisher · View at Google Scholar
  35. A. Y. Au, R. Y. Au, J. L. Demko, R. M. McLaughlin, B. E. Eves, and C. G. Frondoza, “Consil bioactive glass particles enhance osteoblast proliferation and selectively modulate cell signaling pathways in vitro,” Journal of Biomedical Materials Research A, vol. 94, no. 2, pp. 380–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Kanazawa, T. Yamaguchi, S. Yano, M. Yamauchi, M. Yamamoto, and T. Sugimoto, “Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells,” BMC Cell Biology, vol. 8, article 51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. W. Zhang, X. Shen, C. Wan et al., “Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK,” Cell Biochemistry and Function, vol. 30, no. 4, pp. 297–302, 2012. View at Publisher · View at Google Scholar
  38. E. Haÿ, A. Nouraud, and P. J. Marie, “N-cadherin negatively regulates osteoblast proliferation and survival by antagonizing Wnt, ERK and PI3K/Akt signalling,” PloS ONE, vol. 4, no. 12, p. e8284, 2009. View at Scopus
  39. Y. X. Gu, J. Du, M. S. Si, J. J. Mo, S. C. Qiao, and H. C. Lai, “The roles of PI3K/Akt signaling pathway in regulating MC3T3-E1 preosteoblast proliferation and differentiation on SLA and SLActive titanium surfaces,” Journal of Biomedical Materials Research A, vol. 101, no. 3, pp. 748–754, 2013.
  40. S. Katz, V. Ayala, G. Santillan, and R. Boland, “Activation of the PI3K/Akt signaling pathway through P2Y2 receptors by extracellular ATP is involved in osteoblastic cell proliferation,” Archives of Biochemistry and Biophysics, vol. 513, no. 2, pp. 144–152, 2011. View at Publisher · View at Google Scholar
  41. P. Ma, B. Gu, J. Ma et al., “Glimepiride induces proliferation and differentiation of rat osteoblasts via the PI3-kinase/Akt pathway,” Metabolism, vol. 59, no. 3, pp. 359–366, 2010. View at Publisher · View at Google Scholar · View at Scopus