About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2013 (2013), Article ID 374858, 5 pages
http://dx.doi.org/10.1155/2013/374858
Clinical Study

Association between TCF7L2 Genotype and Glycemic Control in Diabetic Patients Treated with Gliclazide

1Department of Internal Medicine 4, Faculty of Medicine, L. Pasteur University Hospital, P. J. Šafárik University in Košice, 041 90 Košice, Slovakia
2Department of Medical Biology, Faculty of Medicine, P. J. Šafárik University in Košice, 040 66 Košice, Slovakia

Received 4 December 2012; Accepted 20 January 2013

Academic Editor: Ewan Pearson

Copyright © 2013 Martin Javorský et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. M. Gribble and F. Reimann, “Sulphonylurea action revisited: the post-cloning era,” Diabetologia, vol. 46, no. 7, pp. 875–891, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S. L. Shyng and C. G. Nichols, “Octameric stoichiometry of the KATP channel complex,” Journal of General Physiology, vol. 110, no. 6, pp. 655–664, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. J. C. Florez, N. Burtt, P. I. W. De Bakker et al., “Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region,” Diabetes, vol. 53, no. 5, pp. 1360–1368, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Lang, M. Fatehi, and P. E. Light, “Pharmacogenomic analysis of ATP-sensitive potassium channels coexpressing the common type 2 diabetes risk variants E23K and S1369A,” Pharmacogenetics and Genomics, vol. 22, no. 3, pp. 206–214, 2012. View at Publisher · View at Google Scholar
  5. Y. Feng, G. Mao, X. Ren et al., “Ser 1369Ala variant in sulfonylurea receptor gene ABCC8 Is associated with antidiabetic efficacy of gliclazide in Chinese Type 2 diabetic patients,” Diabetes Care, vol. 31, no. 10, pp. 1939–1944, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Javorsky, L. Klimcakova, Z. Schroner, et al., “KCNJ11 gene E23K variant and therapeutic response to sulfonylureas,” European Journal of Internal Medicine, vol. 23, no. 3, pp. 245–249, 2012. View at Publisher · View at Google Scholar
  7. S. F. A. Grant, G. Thorleifsson, I. Reynisdottir et al., “Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes,” Nature Genetics, vol. 38, no. 3, pp. 320–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Tong, Y. Lin, Y. Zhang et al., “Association between TCF7L2 gene polymorphisms and susceptibility to Type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis,” BMC Medical Genetics, vol. 10, article 15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. Florez, K. A. Jablonski, N. Bayley et al., “TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program,” The New England Journal of Medicine, vol. 355, no. 3, pp. 241–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Saxena, L. Gianniny, N. P. Burtt et al., “Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals,” Diabetes, vol. 55, no. 10, pp. 2890–2895, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. E. R. Pearson, L. A. Donnelly, C. Kimber et al., “Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study,” Diabetes, vol. 56, no. 8, pp. 2178–2182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Schroner, M. Javorsky, R. Tkacova et al., “Effect of sulphonylurea treatment on glycaemic control is related to TCF7L2 genotype in patients with type 2 diabetes,” Diabetes, Obesity and Metabolism, vol. 13, no. 1, pp. 89–91, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Holstein, M. Hahnl, A. Körner, M. Stumvoll, and P. Kovacs, “TCF7L2 and therapeutic response to sulfonylureas in patients with type 2 diabetes,” BMC Medical Genetics, vol. 24, pp. 12–30, 2011.
  14. S. Seino, “Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea,” Diabetologia, vol. 55, no. 8, pp. 2096–2108, 2012. View at Publisher · View at Google Scholar
  15. M. Winkler, D. Stephan, S. Bieger, P. Kühner, F. Wolff, and U. Quast, “Testing the bipartite model of the sulfonylurea receptor binding site: binding of A-, B-, and A + B-site ligands,” Journal of Pharmacology and Experimental Therapeutics, vol. 322, no. 2, pp. 701–708, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 29, Supplement 1, pp. S43–S48, 2006.
  17. Z. Liu and J. F. Habener, “Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation,” Journal of Biological Chemistry, vol. 283, no. 13, pp. 8723–8735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Preitner, M. Ibberson, I. Franklin et al., “Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors,” Journal of Clinical Investigation, vol. 113, no. 4, pp. 635–645, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Shibasaki, H. Takahashi, T. Miki et al., “Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19333–19338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. L. Zhang, M. Katoh, T. Shibasaki et al., “The cAMP sensor epac2 is a direct target of antidiabetic sulfonylurea drugs,” Science, vol. 325, no. 5940, pp. 607–610, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. T. Villareal, H. Robertson, G. I. Bell et al., “TCF7L2 variant rs7903146 affects the risk of type 2 diabetes by modulating incretin action,” Diabetes, vol. 59, no. 2, pp. 479–485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Patel, S. MacMahon, J. Chalmers et al., “Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes,” The New England Journal of Medicine, vol. 358, no. 24, pp. 2560–2572, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Schernthaner, A. Grimaldi, U. Di Mario et al., “Guide study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients,” European Journal of Clinical Investigation, vol. 34, no. 8, pp. 535–542, 2004. View at Publisher · View at Google Scholar · View at Scopus