About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2013 (2013), Article ID 570413, 6 pages
http://dx.doi.org/10.1155/2013/570413
Clinical Study

Effects of Low-Dose Testosterone Undecanoate Treatment on Bone Mineral Density and Bone Turnover Markers in Elderly Male Osteoporosis with Low Serum Testosterone

Geriatric Department of the Second Xiang-Ya Hospital, Institute of Aging and Geriatric Research, Central South University, No. 139 Middle Renmin Road, Changsha, Hunan 410011, China

Received 24 December 2012; Revised 23 January 2013; Accepted 30 January 2013

Academic Editor: Guang-Da Xiang

Copyright © 2013 Yan-Jiao Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. T. Hannan, D. T. Felson, B. Dawson-Hughes et al., “Risk factors for longitudinal bone loss in elderly men and women: the Framingham osteoporosis study,” Journal of Bone and Mineral Research, vol. 15, no. 4, pp. 710–720, 2000. View at Scopus
  2. O. Johnell and J. A. Kanis, “An estimate of the worldwide prevalence and disability associated with osteoporotic fractures,” Osteoporosis International, vol. 17, no. 12, pp. 1726–1733, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Khosla, S. Amin, and E. Orwoll, “Osteoporosis in men,” Endocrine Reviews, vol. 29, no. 4, pp. 441–464, 2008. View at Publisher · View at Google Scholar
  4. A. C. Martin, “Osteoporosis in men: a review of endogenous sex hormones and testosterone replacement therapy,” Journal of Pharmacy Practice, vol. 24, no. 3, pp. 307–315, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. Committee on Assessing the Need for Clinical Trials of Testosterone Replacement Therapy, “Executive summary,” in Testosterone and Aging: Clinical Research Directions, C. T. Liverman and D. G. Blazer, Eds., pp. 1–10, The National Academic Press, Washington, DC, USA, 2004.
  6. A. Morales, B. Johnston, J. P. W. Heaton, and M. Lundie, “Testosterone supplementation for hypogonadal impotence: assessment of biochemical measures and therapeutic outcomes,” Journal of Urology, vol. 157, no. 3, pp. 849–854, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Zitzmann, A. Mattern, J. Hanisch, L. Gooren, H. Jones, and M. Maggi, “IPASS: a study on the tolerability and effectiveness of injectable testosterone undecanoate for the treatment of male hypogonadism in a worldwide sample of 1,438 men,” The Journal of Sexual Medicine, vol. 10, no. 2, pp. 579–588, 2012. View at Publisher · View at Google Scholar
  8. J. A. Kanis, L. J. Melton III, C. Christiansen, C. C. Johnston, and N. Khaltaev, “The diagnosis of osteoporosis,” Journal of Bone and Mineral Research, vol. 9, no. 8, pp. 1137–1141, 1994.
  9. H. K. Genant, C. Y. Wu, C. Van Kuijk, and M. C. Nevitt, “Vertebral fracture assessment using a semiquantitative technique,” Journal of Bone and Mineral Research, vol. 8, no. 9, pp. 1137–1148, 1993. View at Scopus
  10. S. Khosla, “Update in male osteoporosis,” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 1, pp. 3–10, 2010. View at Publisher · View at Google Scholar
  11. K. S. Nair, R. A. Rizza, P. O'Brien et al., “DHEA in elderly women and DHEA or testosterone in elderly men,” The New England Journal of Medicine, vol. 355, no. 16, pp. 1647–1659, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. K. Amory, N. B. Watts, K. A. Easley et al., “Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with low serum testosterone,” The Journal of Clinical Endocrinology & Metabolism, vol. 89, no. 2, pp. 503–510, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. S. Midzak, H. Chen, V. Papadopoulos, and B. R. Zirkin, “Leydig cell aging and the mechanisms of reduced testosterone synthesis,” Molecular and Cellular Endocrinology, vol. 299, no. 1, pp. 23–31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Y. Kang, C. L. Cho, K. L. Huang et al., “Nongenomic androgen activation of phosphatidylinositol 3-kinase/Akt signaling pathway in MC3T3-E1 osteoblasts,” Journal of Bone and Mineral Research, vol. 19, no. 7, pp. 1181–1190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Balkan, K. L. Burnstein, P. C. Schiller et al., “Androgen-induced mineralization by MC3T3-E1 osteoblastic cells reveals a critical window of hormone responsiveness,” Biochemical and Biophysical Research Communications, vol. 328, no. 3, pp. 783–789, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. K. M. Wiren, A. C. Evans, and X. W. Zhang, “Osteoblast differentiation influences androgen and estrogen receptor-α and -β expression,” Journal of Endocrinology, vol. 175, no. 3, pp. 683–694, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. Chen, H. Kaji, T. Sugimoto, and K. Chihara, “Testosterone inhibits osteoclast formation stimulated by parathyroid hormone through androgen receptor,” FEBS Letters, vol. 491, no. 1-2, pp. 91–93, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Pederson, M. Kremer, J. Judd et al., “Androgens regulate bone resorption activity of isolated osteoclasts in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 505–510, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Amin, Y. Zhang, and C. T. Sawin, “Association of hypogonadism and estradiol levels with bone mineral density in elderlymen from the Framingham study,” Annals of Internal Medicine, vol. 133, no. 12, pp. 951–963, 2000.
  20. T. G. Travison, A. B. Araujo, T. J. Beck et al., “Relation between serum testosterone, serum estradiol, sex hormone-binding globulin, and geometrical measures of adult male proximal femur strength,” The Journal of Clinical Endocrinology & Metabolism, vol. 94, no. 3, pp. 853–860, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. B. L. Riggs, S. Khosla, and L. J. Melton, “Sex steroids and the construction and conservation of the adult skeleton,” Endocrine Reviews, vol. 23, no. 3, pp. 279–302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Gennari, R. Nuti, and J. P. Bilezikian, “Aromatase activity and bone homeostasis in men,” The Journal of Clinical Endocrinology & Metabolism, vol. 89, no. 12, pp. 5898–5907, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Vandenput and C. Ohlsson, “Sex steroid metabolism in the regulation of bone health in men,” Journal of Steroid Biochemistry and Molecular Biology, vol. 121, no. 3–5, pp. 582–588, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. E. L. Rhoden and A. Morgentaler, “Risks of testosterone-replacement therapy and recommendations for monitoring,” The New England Journal of Medicine, vol. 350, no. 5, pp. 482–492, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Sengupta, H. J. Duncan, R. J. Macgregor, and J. M. Russell, “The development of prostate cancer despite late onset androgen deficiency,” International Journal of Urology, vol. 12, no. 9, pp. 847–848, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Bhasin, G. R. Cunningham, F. J. Hayes et al., “Testosterone therapy in men with androgen deficiency syndromes: an endocrine society clinical practice guideline,” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 6, pp. 2536–2559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Bhasin, A. Zhang, A. Coviello et al., “The impact of assay quality and reference ranges on clinical decision making in the diagnosis of androgen disorders,” Steroids, vol. 73, no. 13, pp. 1311–1317, 2008. View at Publisher · View at Google Scholar · View at Scopus