About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2013 (2013), Article ID 590261, 7 pages
http://dx.doi.org/10.1155/2013/590261
Research Article

Action of Halowax 1051 on Enzymes of Phase I (CYP1A1) and Phase II (SULT1A and COMT) Metabolism in the Pig Ovary

Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University, 31-387 Krakow, Poland

Received 4 January 2013; Accepted 21 March 2013

Academic Editor: Radmila Kovacevic

Copyright © 2013 Justyna Barć et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. IPCS (International Programme on Chemical Safety), Chlorinated Naphthalenes, vol. 34 of Concise International Chemical Assessment Document, WHO, Geneva, Switzerland, 2001.
  2. J. Falandysz, M. Kawano, M. Ueda et al., “Composition of chloronaphthalene congeners in technical chloronaphthalene formulations of the Halowax series,” Journal of Environmental Science and Health A, vol. 35, no. 3, pp. 281–298, 2000. View at Scopus
  3. D. Hayward, “Identification of bioaccumulating polychlorinated naphthalenes and their toxicological significance,” Environmental Research, vol. 76, no. 1, pp. 1–18, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Falandysz, B. Strandberg, L. Strandberg, P. A. Bergqvist, and C. Rappe, “Concentrations and biomagnification of polychlorinated naphthalenes in black cormorants Phalacrocorax carbo sinensis from the Gulf of Gdansk, Baltic Sea,” Science of the Total Environment, vol. 204, no. 1, pp. 97–106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Martí-Cid, A. Bocio, J. M. Llobet, and J. L. Domingo, “Intake of chemical contaminants through fish and seafood consumption by children of Catalonia, Spain: health risks,” Food and Chemical Toxicology, vol. 45, no. 10, pp. 1968–1974, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Llobet, G. Falcó, A. Bocio, and J. L. Domingo, “Human exposure to polychlorinated naphthalenes through the consumption of edible marine species,” Chemosphere, vol. 66, no. 6, pp. 1107–1113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Orlikowska, N. Hanari, B. Wyrzykowska et al., “Airborne chloronaphthalenes in Scots pine needles of Poland,” Chemosphere, vol. 75, no. 9, pp. 1196–1205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Falandysz, “Chloronaphthalenes as food-chain contaminants: a review,” Food Additives and Contaminants, vol. 20, no. 11, pp. 995–1014, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Kunisue, B. Johnson-Restrepo, D. R. Hilker, K. M. Aldous, and K. Kannan, “Polychlorinated naphthalenes in human adipose tissue from New York, USA,” Environmental Pollution, vol. 157, no. 3, pp. 910–915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Park, J. H. Kang, S. Y. Baek, and Y. S. Chang, “Relative importance of polychlorinated naphthalenes compared to dioxins, and polychlorinated biphenyls in human serum from Korea: contribution to TEQs and potential sources,” Environmental Pollution, vol. 158, no. 5, pp. 1420–1427, 2010.
  11. N. Akerblom, K. Olsson, A. H. Berg, P. L. Andersson, M. Tysklind L Fِrlin, and L. Norrgren, “Impact of polychlorinated naphthalenes (PCNs) in juvenile Baltic salmon, Salm osalar: evaluation of estrogenic effects, development, and CYP1A induction,” Archives of Environmental Contamination and Toxicology, vol. 38, no. 2, pp. 225–233, 2000.
  12. E. Ł. Gregoraszczuk, J. Jerzak, and A. Rak-Mardyla, “Halowax 1051 affects steroidogenesis, 17beta-hydroxysteroid dehydrogenase (17beta-HSD) and cytochrome P450arom (CYP19) activity, and protein expression in porcine ovarian follicles,” Reproductive Toxicology, vol. 32, no. 4, pp. 379–384, 2011.
  13. E. A. Cannady, C. A. Dyer, P. J. Christian, I. G. Sipes, and P. B. Hoyer, “Expression and activity of cytochromes P450 2E1, 2A, and 2B in the mouse ovary: the effect of 4-vinylcyclohexene and its diepoxide metabolite,” Toxicological Sciences, vol. 73, no. 2, pp. 423–430, 2003.
  14. C. Xu, C. Y. T. Li, and A. N. T. Kong, “Induction of phase I, II and III drug metabolism/transport by xenobiotics,” Archives of Pharmacal Research, vol. 28, no. 3, pp. 249–268, 2005. View at Scopus
  15. A. Ptak, G. Ludewig, M. Kapiszewska et al., “Induction of cytochromes P450, caspase-3 and DNA damage by PCB3 and its hydroxylated metabolites in porcine ovary,” Toxicology Letters, vol. 166, no. 3, pp. 200–211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Ptak, G. Ludewig, and E. Ł. Gregoraszczuk, “A low halogenated biphenyl (PCB3) increases CYP1A1 expression and activity via the estrogen receptor beta in the porcine ovary,” Journal of Physiology and Pharmacology, vol. 59, no. 3, pp. 577–588, 2008. View at Scopus
  17. A. Karpeta, K. Warzecha, J. Jerzak, A. Ptak, and E. L. Gregoraszczuk, “Activation of the enzymes of phase I, (CYP2B1/2) and phase II, (SULT1A and COMT) metabolism by 2, 2, 4, 4-tetrabromodiphenyl ether (BDE47) in the pig ovary,” Reproductive Toxicology, vol. 34, no. 3, pp. 436–442, 2012.
  18. S. Salih, X. Xu, T. D. Veenstra et al., “Lower levels of urinary 2-hydroxyestrogens in polycystic ovary syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 8, pp. 3285–3291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Lin, Y. Lou, and E. J. Squires, “Molecular cloning and functional analysis of porcine SULT1A1 gene and its variant: a single mutation SULT1A1 causes a significant decrease in sulfation activity,” Mammalian Genome, vol. 15, no. 3, pp. 218–226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Stoklosowa, J. Bahr, and E. Gregoraszczuk, “Some morphological and functional characteristics of cells of the porcine theca interna in tissue culture,” Biology of Reproduction, vol. 19, no. 4, pp. 712–719, 1978. View at Scopus
  21. S. Stoklosowa, E. Gregoraszczuk, and C. P. Channing, “Estrogen and progesterone secretion by isolated cultured porcine thecal and granulosa cells,” Biology of Reproduction, vol. 26, no. 5, pp. 943–952, 1982. View at Scopus
  22. S. W. Kennedy and S. P. Jones, “Simultaneous measurement of cytochrome P4501A catalytic activity and total protein concentration with a fluorescence plate reader,” Analytical Biochemistry, vol. 222, no. 1, pp. 217–223, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. W. F. Herblin, “A simple colorimetric assay for catechol-O-methyl transferase,” Analytical Biochemistry, vol. 51, no. 1, pp. 19–22, 1973. View at Scopus
  24. L. T. Frame, S. Ozawa, S. A. Nowell et al., “A simple colorimetric assay for phenotyping the major human thermostable phenol sulfotransferase (SULT1A1) using platelet cytosols,” Drug Metabolism and Disposition, vol. 28, no. 9, pp. 1063–1068, 2000. View at Scopus
  25. A. Ptak, G. Ludewig, and E. Ł. Gregoraszczuk, “A low halogenated biphenyl (PCB3) increases CYP1A1 expression and activity via the estrogen receptor beta in the porcine ovary,” Journal of Physiology and Pharmacology, vol. 59, no. 3, pp. 577–588, 2008. View at Scopus
  26. A. Galoch, A. Sapota, M. Skrzypinska-Gawrysiak, and A. Kilanowicz, “Acute toxicity of polychlorinated naphthalenes and their effect on cytochrome P450,” Human and Experimental Toxicology, vol. 25, no. 2, pp. 85–92, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. D. L. Villeneuve, K. Kannan, J. S. Khim et al., “Relative potencies of individual polychlorinated naphthalenes to induce dioxin-like responses in fish and mammalian in vitro bioassays,” Archives of Environmental Contamination and Toxicology, vol. 39, no. 3, pp. 273–281, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. H. H. Cornish and W. D. Block, “Metabolism of chlorinated naphthalenes,” Journal of Biological Chemistry, vol. 23, no. 2, pp. 583–588, 1958.
  29. S. M. Salih, M. Jamaluddin, S. A. Salama, A. A. Fadl, M. Nagamani, and A. Al-Hendy, “Regulation of catechol O-methyltransferase expression in granulosa cells: a potential role for follicular arrest in polycystic ovary syndrome,” Fertility and Sterility, vol. 89, no. 5, pp. 1414–1421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Hernandez, I. Hernandez, F. Rodríguez et al., “Endothelial dysfunction in gestational hypertension induced by catechol-O-methyltransferase inhibition,” Experimental Physiology, vol. 98, no. 3, pp. 856–866, 2013.
  31. M. la Merril, R. Harper, L. S. Birnbaum, R. D. Cardiff, and D. W. Threadgill, “Maternal dioxin exposure combined with a diet high in fat increases mammary cancer incidence in mice,” Environmental Health Perspectives, vol. 118, no. 5, pp. 596–601, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Q. Wang and M. O. James, “Inhibition of sulfotransferases by xenobiotics,” Current Drug Metabolism, vol. 7, no. 1, pp. 83–104, 2006.
  33. K. Nagata and Y. Yamazoe, “Pharmacogenetics of sulfotransferase,” Annual Review of Pharmacology and Toxicology, vol. 40, pp. 159–176, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. R. L. Blanchard, R. R. Freimuth, J. Buck, R. M. Weinshilboum, and M. W. H. Coughtrie, “A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily,” Pharmacogenetics, vol. 14, no. 3, pp. 199–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Wang, N. Raghavan, K. He et al., “Sulfation of O-demethyl apixaban: enzyme identification and species comparison,” Drug Metabolism and Disposition, vol. 37, no. 4, pp. 802–808, 2009. View at Publisher · View at Google Scholar · View at Scopus