About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2013 (2013), Article ID 650984, 15 pages
http://dx.doi.org/10.1155/2013/650984
Review Article

Diverse Effects of Phytoestrogens on the Reproductive Performance: Cow as a Model

1Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
2Department of Life Sciences, Doctoral School in Life Sciences, University of Siena, Miniato via A. Moro 2 St., 53100 Siena, Italy
3Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Warmia and Masuria, Zolnierska 14 C St., 10-561 Olsztyn, Poland

Received 14 January 2013; Accepted 4 March 2013

Academic Editor: Ewa Gregoraszczuk

Copyright © 2013 Izabela Wocławek-Potocka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Moutsatsou, “The spectrum of phytoestrogens in nature: our knowledge is expanding,” Hormones, vol. 6, no. 3, pp. 173–193, 2007. View at Scopus
  2. H. Wei, R. Bowen, Q. Cai, S. Barnes, and Y. Wang, “Antioxidant and antipromotional effects of the soybean isoflavone genistein,” Proceedings of the Society for Experimental Biology and Medicine, vol. 208, no. 1, pp. 124–130, 1995. View at Scopus
  3. C. H. Adlercreutz, B. R. Goldin, S. L. Gorbach et al., “Soybean phytoestrogen intake and cancer risk,” The Journal of Nutrition, vol. 125, pp. 757–770, 1995.
  4. R. Bosviel, E. Dumollard, P. Déchelotte, Y. J. Bignon, and D. Bernard-Gallon, “Can soy phytoestrogens decrease DNA methylation in BRCA1 and BRCA2 oncosuppressor genes in breast cancer?” OMICS, vol. 16, no. 5, pp. 235–244, 2012. View at Publisher · View at Google Scholar
  5. A. H. Lichtenstein, “Soy protein, phytoestrogens and cardiovascular disease risk,” Recent Advances in Nutritional Sciences, vol. 128, pp. 1589–1592, 1998.
  6. T. Horiuchi, T. Onouchi, M. Takahashi, H. Ito, and H. Orimo, “Effect of soy protein on bone metabolism in postmenopausal Japanese women,” Osteoporosis International, vol. 11, no. 8, pp. 721–724, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Adlercreutz, E. Hamalainen, S. Gorbach, and B. Goldin, “Dietary phyto-oestrogens and the menopause in Japan,” Lancet, vol. 339, no. 8803, p. 1233, 1992. View at Publisher · View at Google Scholar · View at Scopus
  8. R. M. Sharpe and N. E. Skakkebaek, “Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract?” Lancet, vol. 341, no. 8857, pp. 1392–1395, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. C. D. Humfrey, “Phytoestrogens and human health effects: weighing up the current evidence,” Natural Toxins, vol. 6, pp. 51–59, 1998.
  10. H. W. Bennetts, E. J. Underwood, and F. L. Skier, “A breeding problem of sheep in the south- west division of western Australia,” Journal of Agriculture, Western Australia, vol. 23, pp. 1–12, 1946.
  11. K. Kallela, K. Heinonen, and H. Saloniemi, “Plant oestrogens; the cause of decreased fertility in cows. A case report,” Nordisk Veterinaermedicin, vol. 36, no. 3-4, pp. 124–129, 1984. View at Scopus
  12. K. C. Reinhart, R. K. Dubey, P. J. Keller, U. Lauper, and M. Rosselli, “Xeno-oestrogens and phyto-oestrogens induce the synthesis of leukaemia inhibitory factor by human and bovine oviduct cells,” Molecular Human Reproduction, vol. 5, no. 10, pp. 899–907, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. G. G. J. M. Kuiper, B. Carlsson, K. Grandien et al., “Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors and α and β,” Endocrinology, vol. 138, no. 3, pp. 863–870, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Rosselli, K. Reinhart, B. Imthurn, P. J. Keller, and R. K. Dubey, “Cellular and biochemical mechanisms by which environmental oestrogens influence reproductive function,” Human Reproduction Update, vol. 6, no. 4, pp. 332–350, 2000. View at Scopus
  15. A. Amsterdam, N. Abu-Rustum, J. Carter, and M. Krychman, “Persistent sexual arousal syndrome associated with increased soy intake,” Journal of Sexual Medicine, vol. 2, no. 3, pp. 338–340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Chandrareddy, O. Muneyyirci-Delale, S. I. McFarlane, and O. M. Murad, “Adverse effects of phytoestrogens on reproductive health: a report of three cases,” Complementary Therapies in Clinical Practice, vol. 14, no. 2, pp. 132–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. E. K. Shanle and W. Xu, “Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action,” Chemical Research in Toxicology, vol. 24, no. 1, pp. 6–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. W. S. Branham, S. L. Dial, C. L. Moland et al., “Phytoestrogens and mycoestrogens bind to the rat uterine estrogen receptor,” The Journal of Nutrition, vol. 132, no. 4, pp. 658–664, 2002. View at Scopus
  19. T. Lóránd, E. Vigh, and J. Garai, “Hormonal action of plant derived and anthropogenic non-steroidal estrogenic compounds: phytoestrogens and xenoestrogens,” Current Medicinal Chemistry, vol. 17, no. 30, pp. 3542–3574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. L. de Souza, P. J. Russell, J. H. Kearsley, and L. G. Howes, “Clinical pharmacology of isoflavones and its relevance for potential prevention of prostate cancer,” Nutrition Reviews, vol. 68, no. 9, pp. 542–555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. S. Watson, R. A. Alyea, Y. J. Jeng, and M. Y. Kochukov, “Nongenomic actions of low concentration estrogens and xenoestrogens on multiple tissues,” Molecular and Cellular Endocrinology, vol. 274, no. 1-2, pp. 1–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. C. Dang, “Dose-dependent effects of soy phyto-oestrogen genistein on adipocytes: mechanisms of action: other review,” Obesity Reviews, vol. 10, no. 3, pp. 342–349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. E. R. Prossnitz and M. Barton, “Signaling, physiological functions and clinical relevance of the G protein-coupled estrogen receptor GPER,” Prostaglandins and Other Lipid Mediators, vol. 89, no. 3-4, pp. 89–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Suetsugi, L. Su, K. Karlsberg, Y. C. Yuan, and S. Chen, “Flavone and isoflavone phytoestrogens are agonists of estrogen-related receptors,” Molecular Cancer Research, vol. 1, no. 13, pp. 981–991, 2003. View at Scopus
  25. N. Labinskyy, A. Csiszar, G. Veress et al., “Vascular dysfunction in aging: potential effects of resveratrol, an anti-inflammatory phytoestrogen,” Current Medicinal Chemistry, vol. 13, no. 9, pp. 989–996, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Li and T. O. Tollefsbol, “Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components,” Current Medicinal Chemistry, vol. 17, no. 20, pp. 2141–2151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. Silva and C. A. Price, “Effect of follicle-stimulating hormone on steroid secretion and messenger ribonucleic acids encoding cytochromes P450 aromatase and cholesterol side-chain cleavage in bovine granulosa cells in vitro,” Biology of Reproduction, vol. 62, no. 1, pp. 186–191, 2000. View at Scopus
  28. Y. C. Kao, C. Zhou, M. Sherman, C. A. Laughton, and S. Chen, “Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: a site-directed mutagenesis study,” Environmental Health Perspectives, vol. 106, no. 2, pp. 85–92, 1998. View at Scopus
  29. T. J. O. Lundh, H. Pettersson, and K. H. Kiessling, “Liquid chromatographic determination of the estrogens daidzein, formononetin, coumestrol, and equol in bovine blood plasma and urine,” Journal of the Association of Official Analytical Chemists, vol. 71, no. 5, pp. 938–941, 1988. View at Scopus
  30. T. J. O. Lundh, H. I. Pettersson, and K. A. Martinsson, “Comparative levels of free and conjugated plant estrogens in blood plasma of sheep and cattle fed estrogenic silage,” Journal of Agricultural and Food Chemistry, vol. 38, no. 7, pp. 1530–1534, 1990. View at Scopus
  31. I. Wocławek-Potocka, M. M. Bah, A. Korzekwa et al., “Soybean-derived phytoestrogens regulate prostaglandin secretion in endometrium during cattle estrous cycle and early pregnancy,” Experimental Biology and Medicine, vol. 230, no. 3, pp. 189–199, 2005. View at Scopus
  32. I. Wocławek-Potocka, M. K. Piskula, M. M. Bah et al., “Concentrations of isoflavones and their metabolites in the blood of pregnant and non-pregnant heifers fed soy bean,” Journal of Reproduction and Development, vol. 54, no. 5, pp. 358–363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. T. J. O. Lundh, “Metabolism of estrogenic isoflavones in domestic animals,” Proceedings of the Society for Experimental Biology and Medicine, vol. 208, no. 1, pp. 33–39, 1995. View at Scopus
  34. K. Kelemen, A. Paldi, H. Tinneberg, A. Torok, and J. Szekeres-Bartho, “Early recognition of pregnancy by the maternal immune system,” American Journal of Reproductive Immunology, vol. 39, no. 6, pp. 351–355, 1998. View at Scopus
  35. H. Kindahl, B. Kornmatitsuk, and H. Gustafsson, “The cow in endocrine focus before and after calving,” Reproduction in Domestic Animals, vol. 39, no. 4, pp. 217–221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. L. A. Cohen, J. S. Crespin, C. Wolper et al., “Soy isoflavone intake and estrogen excretion patterns in young women: effect of probiotic administration,” In Vivo, vol. 21, no. 3, pp. 507–512, 2007. View at Scopus
  37. I. L. F. Nielsen and G. Williamson, “Review of the factors affecting bioavailability of soy isoflavones in humans,” Nutrition and Cancer, vol. 57, no. 1, pp. 1–10, 2007. View at Scopus
  38. K. Shimoi, N. Saka, R. Nozawa et al., “Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammation,” Drug Metabolism and Disposition, vol. 29, no. 12, pp. 1521–1524, 2001. View at Scopus
  39. E. R. Barnea, Y. J. Choi, and P. C. Leavis, “Embryo-maternal signaling prior to implantation,” Early Pregnancy, vol. 4, no. 3, pp. 166–175, 2000. View at Scopus
  40. I. Kowalczyk-Zieba, I. Wocławek-Potocka, M. K. Piskula et al., “Experimentally induced mastitis and metritis modulate soy bean derived isoflavone biotransformation in diary cows,” Theriogenology, vol. 76, no. 9, pp. 1744–1755, 2011. View at Publisher · View at Google Scholar
  41. C. Mcgarvey, P. S. Cates, A. N. Brooks et al., “Phytoestrogens and gonadotropin-releasing hormone pulse generator activity and pituitary luteinizing hormone release in the rat,” Endocrinology, vol. 142, no. 3, pp. 1202–1208, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. K. K. Piotrowska, I. Wocławek-Potocka, M. M. Bah et al., “Phytoestrogens and their metabolites inhibit the sensitivity of the bovine corpus luteum to luteotropic factors,” Journal of Reproduction and Development, vol. 52, no. 1, pp. 33–41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. C. L. Hughes Jr., R. S. Kaldas, A. S. Weisinger, C. E. McCants, and K. B. Basham, “Acute and subacute effects of naturally occurring estrogens on luteinizing hormone secretion in the ovariectomized rat—part 1,” Reproductive Toxicology, vol. 5, no. 2, pp. 127–132, 1991. View at Scopus
  44. C. Benassayag, M. Perrot-Applanat, and F. Ferre, “Phytoestrogens as modulators of steroid action in target cells,” Journal of Chromatography B, vol. 777, no. 1-2, pp. 233–248, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. R. A. Mathieson and W. D. Kitts, “Binding of phyto-estrogen and estradiol-17β by cytoplasmic receptors in the pituitary gland and hypothalamus of the ewe,” Journal of Endocrinology, vol. 85, no. 2, pp. 317–325, 1980. View at Scopus
  46. G. W. Montgomery, G. B. Martin, J. Le Bars, and J. Pelletier, “Gonadotrophin release in ovariectomized ewes fed different amounts of coumestrol,” Journal of Reproduction and Fertility, vol. 73, no. 2, pp. 457–463, 1985. View at Scopus
  47. K. Romanowicz, T. Misztal, and B. Barcikowski, “Genistein, a phytoestrogen, effectively modulates luteinizing hormone and prolactin secretion in ovariectomized ewes during seasonal anestrus,” Neuroendocrinology, vol. 79, no. 2, pp. 73–81, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Polkowska, Y. Ridderstråle, M. Wańkowska, K. Romanowicz, T. Misztal, and A. Madej, “Effects of intracerebroventricular infusion of genistein on gonadotrophin subunit mRNA and immunoreactivity of gonadotrophins and oestrogen receptor-α in the pituitary cells of the anoestrous ewe,” Journal of Chemical Neuroanatomy, vol. 28, no. 4, pp. 217–224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Misztal, M. Wańkowska, K. Górski, and K. Romanowicz, “Central estrogen-like effect of genistein on growth hormone secretion in the ewe,” Acta Neurobiologiae Experimentalis, vol. 67, no. 4, pp. 411–419, 2007. View at Scopus
  50. N. Scanlan and D. C. Skinner, “Estradiol modulation of growth hormone secretion in the ewe: no growth hormone-releasing hormone neurons and few somatotropes express estradiol receptor α,” Biology of Reproduction, vol. 66, no. 5, pp. 1267–1273, 2002. View at Scopus
  51. G. D. Niswender, “Molecular control of luteal secretion of progesterone,” Reproduction, vol. 123, no. 3, pp. 333–339, 2002. View at Scopus
  52. L. S. Shore, C. Rios, S. Marcus, M. Bernstein, and M. Shemesh, “Relationship between peripheral estrogen concentrations at insemination and subsequent fetal loss in cattle,” Theriogenology, vol. 50, no. 1, pp. 101–107, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Schams and B. Berisha, “Regulation of corpus luteum function in cattle—an overview,” Reproduction in Domestic Animals, vol. 39, no. 4, pp. 241–251, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. I. Wocławek-Potocka, A. Bober, A. Korzekwa, K. Okuda, and D. J. Skarżyński, “Equol and para-ethyl-phenol stimulate prostaglandin F2α secretion in bovine corpus luteum: intracellular mechanisms of action,” Prostaglandins and Other Lipid Mediators, vol. 79, no. 3-4, pp. 287–297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. D. J. Skarżyński and K. Okuda, “Different actions of noradrenaline and nitric oxide on the output of prostaglandins and progesterone in cultured bovine luteal cells,” Prostaglandins and Other Lipid Mediators, vol. 60, no. 1–3, pp. 35–47, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Okuda, D. J. Skarżyński, and Y. Miyamoto, “Regulation of endometrial prostaglandin F2α synthesis during luteolysis and early pregnancy in cattle,” Domestic Animal Endocrinology, vol. 23, no. 1-2, pp. 255–264, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. I. Wocławek-Potocka, T. J. Acosta, A. Korzekwa et al., “Phytoestrogens modulate prostaglandin production in bovine endometrium: cell type specificity and intracellular mechanisms,” Experimental Biology and Medicine, vol. 230, no. 5, pp. 326–333, 2005. View at Scopus
  58. I. Wocławek-Potocka, K. Okuda, T. J. Acosta, A. Korzekwa, W. Pilawski, and D. J. Skarżyński, “Phytoestrogen metabolites are much more active than phytoestrogens themselves in increasing prostaglandin F2α synthesis via prostaglanin F2α synthase-like 2 stimulation in bovine endometrium,” Prostaglandins and Other Lipid Mediators, vol. 78, no. 1–4, pp. 202–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Wocławek-Potocka, K. Borkowski, A. Korzekwa, K. Okuda, and D. J. Skarżyński, “Phyto- and endogenous estrogens differently activate intracellular calcium ion mobilization in bovine endometrial cells,” Journal of Reproduction and Development, vol. 52, no. 6, pp. 731–740, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. K. M. Henderson, R. J. Scaramuzzi, and D. T. Baird, “Simultaneous infusion of prostaglandin E2 antagonizes the luteolytic action of prostaglandin F2α in vivo,” Journal of Endocrinology, vol. 72, no. 3, pp. 379–383, 1977. View at Scopus
  61. J. A. McCracken, E. E. Custer, and J. C. Lamsa, “Luteolysis: a neuroendocrine-mediated event,” Physiological Reviews, vol. 79, no. 2, pp. 263–323, 1999. View at Scopus
  62. T. G. Kennedy, “Prostaglandin E2, adenosine-3′:5′-cyclic monophosphate and changes in endometrial vascular permeability in rat uteri sensitized for the decidual cell reaction,” Biology of Reproduction, vol. 29, no. 5, pp. 1069–1076, 1983. View at Scopus
  63. Y. S. Weems, M. A. Lammoglia, H. R. Vera-Avila, R. D. Randel, R. G. Sasser, and C. W. Weems, “Effects of luteinizing hormone (LH), PGE2, 8-Epi-PGE1, 8-Epi-PGF2α, trichosanthin and pregnancy specific protein B (PSPB) on secretion of prostaglandin (PG) E (PGE) or F2α (PGF2)α in vitro by corpora lutea (CL) from nonpregnant and pregnant cows,” Prostaglandins and Other Lipid Mediators, vol. 55, no. 5-6, pp. 359–376, 1998. View at Publisher · View at Google Scholar · View at Scopus
  64. F. N. Scenna, J. L. Edwards, N. R. Rohrbach, M. E. Hockett, A. M. Saxton, and F. N. Schrick, “Detrimental effects of prostaglandin F2α on preimplantation bovine embryos,” Prostaglandins and Other Lipid Mediators, vol. 73, no. 3-4, pp. 215–226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. A. K. Goff, “Steroid hormone modulation of prostaglandin secretion in the ruminant endometrium during the estrous cycle,” Biology of Reproduction, vol. 71, no. 1, pp. 11–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Miyamoto, D. J. Skarżyński, and K. Okuda, “Is tumor necrosis factor a trigger for the initiation of endometrial prostaglandin F2α release at luteolysis in cattle?” Biology of Reproduction, vol. 62, no. 5, pp. 1109–1115, 2000. View at Scopus
  67. D. Skarżyński, K. Piotrowska, M. Bah et al., “Effects of exogenous tumour necrosis factor-α on the secretory function of the bovine reproductive tract depend on tumour necrosis factor-α concentrations,” Reproduction in Domestic Animals, vol. 44, no. 3, pp. 371–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Asselin, A. K. Goff, H. Bergeron, and M. A. Fortier, “Influence of sex steroids on the production of prostaglandins F2α and E2 and response to oxytocin in cultured epithelial and stromal cells of the bovine endometrium,” Biology of Reproduction, vol. 54, no. 2, pp. 371–379, 1996. View at Scopus
  69. W. W. Thatcher, F. F. Bartol, J. J. Knickerbocker et al., “Maternal recognition of pregnancy in cattle,” Journal of Dairy Science, vol. 67, no. 11, pp. 2797–2811, 1984. View at Scopus
  70. J. A. Amico, R. S. Crowley, T. R. Insel, A. Thomas, and J. A. O'Keefe, “Effect of gonadal steroids upon hypothalamic oxytocin expression,” Advances in Experimental Medicine and Biology, vol. 395, pp. 23–35, 1995. View at Scopus
  71. T. Benie and M. L. Thieulant, “Interaction of some traditional plant extracts with uterine oestrogen or progestin receptors,” Phytotherapy Research, vol. 17, no. 7, pp. 756–760, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. K. D. R. Setchell and A. Cassidy, “Dietary isoflavones: biological effects and relevance to human health,” The Journal of Nutrition, vol. 129, no. 3, pp. 758–767, 1999. View at Scopus
  73. M. Beato, “Gene regulation by steroid hormones,” Cell, vol. 56, no. 3, pp. 335–344, 1989. View at Scopus
  74. D. M. Tham, C. D. Gardner, and W. L. Haskell, “Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 7, pp. 2223–2235, 1998. View at Publisher · View at Google Scholar · View at Scopus
  75. M. K. Bagchi, M. J. Tsai, B. W. O'Malley, and S. Y. Tsai, “Analysis of the mechanism of steroid hormone receptor-dependent gene activation in cell-free systems,” Endocrine Reviews, vol. 13, no. 3, pp. 525–535, 1992. View at Publisher · View at Google Scholar · View at Scopus
  76. R. M. Lösel, E. Falkenstein, M. Feuring et al., “Nongenomic steroid action: controversies, questions, and answers,” Physiological Reviews, vol. 83, no. 3, pp. 965–1016, 2003. View at Scopus
  77. R. K. Dubey, M. Rosselli, B. Imthurn, P. J. Keller, and E. K. Jackson, “Vascular effects of environmental oestrogens: implications for reproductive and vascular health,” Human Reproduction Update, vol. 6, no. 4, pp. 351–363, 2000. View at Scopus
  78. C. Morton, N. Wilkie, and M. R. Boarder, “Tyrosine phosphorylation, MAPK and PLD in AII stimulated mitogenesis,” Biochemical Society Transactions, vol. 23, no. 3, p. 426, 1995. View at Scopus
  79. R. M. Touyz and E. L. Schiffrin, “Tyrosine kinase signaling pathways modulate angiotensin II-induced calcium ([Ca2+]i) transients in vascular smooth muscle cells,” Hypertension, vol. 27, no. 5, pp. 1097–1103, 1996. View at Scopus
  80. S. Nilsson, S. Mäkelä, E. Treuter et al., “Mechanisms of estrogen action,” Physiological Reviews, vol. 81, no. 4, pp. 1535–1565, 2001. View at Scopus
  81. J. W. Thornton, “Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 10, pp. 5671–5676, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. P. K. Verkasalo, P. N. Appleby, N. E. Allen, G. Davey, H. Adlercreutz, and T. J. Key, “Soya intake and plasma concentrations of daidzein and genistein: validity of dietary assessment among eighty British women (Oxford arm of the European Prospective Investigation into Cancer and Nutrition),” British Journal of Nutrition, vol. 86, no. 3, pp. 415–421, 2001. View at Scopus
  83. L. U. Thompson, B. A. Boucher, Z. Liu, M. Cotterchio, and N. Kreiger, “Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan,” Nutrition and Cancer, vol. 54, no. 2, pp. 184–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. P. de Cremoux, P. This, G. Leclercq, and Y. Jacquot, “Controversies concerning the use of phytoestrogens in menopause management: bioavailability and metabolism,” Maturitas, vol. 65, no. 4, pp. 334–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. G. P. Adams and R. A. Pierson, “Bovine model for study of ovarian follicular dynamics in humans,” Theriogenology, vol. 43, no. 1, pp. 113–120, 1995. View at Scopus
  86. A. Bettegowda, O. V. Patel, K. B. Lee et al., “Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: functional and diagnostic implications,” Biology of Reproduction, vol. 79, no. 2, pp. 301–309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Adlercreutz, T. Fotsis, C. Bannwart et al., “Determination of urinary lignans and phytoestrogen metabolites, potential antiestrogens and anticarcinogens, in urine of women on various habitual diets,” Journal of Steroid Biochemistry, vol. 25, no. 5B, pp. 791–797, 1986. View at Scopus
  88. P. Borrione, M. Rizzo, F. Quaranta et al., “Consumption and biochemical impact of commercially available plant-derived nutritional supplements. An observational pilot-study on recreational athletes,” Journal of the International Society of Sports Nutrition, vol. 9, pp. 1–28, 2012.
  89. M. S. Rosell, P. N. Appleby, E. A. Spencer, and T. J. Key, “Soy intake and blood cholesterol concentrations: a cross-sectional study of 1033 pre- and postmenopausal women in the Oxford arm of the European Prospective Investigation into Cancer and Nutrition,” The American Journal of Clinical Nutrition, vol. 80, no. 5, pp. 1391–1396, 2004. View at Scopus
  90. R. C. M. Siow and G. E. Mann, “Dietary isoflavones and vascular protection: activation of cellular antioxidant defenses by SERMs or hormesis?” Molecular Aspects of Medicine, vol. 31, no. 6, pp. 468–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. S. I. Khan, J. Zhao, I. A. Khan, L. A. Walker, and A. K. Dasmahapatra, “Potential utility of natural products as regulators of breast cancer-associated aromatase promoters,” Reproductive Biology and Endocrinology, vol. 9, article 91, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. R. C. Travis, N. E. Allen, P. N. Appleby, E. A. Spencer, A. W. Roddam, and T. J. Key, “A prospective study of vegetarianism and isoflavone intake in relation to breast cancer risk in British women,” International Journal of Cancer, vol. 122, no. 3, pp. 705–710, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. M. D. Althuis, J. M. Dozier, W. F. Anderson, S. S. Devesa, and L. A. Brinton, “Global trends in breast cancer incidence and mortality 1973–1997,” International Journal of Epidemiology, vol. 34, no. 2, pp. 405–412, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. D. F. Romagnolo and O. I. Selmin, “Flavonoids and cancer prevention: a review of the evidence,” Journal of Nutrition in Gerontology and Geriatrics, vol. 31, pp. 206–238, 2012.
  95. P. J. Magee and I. Rowland, “Soy products in the management of breast cancer,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 15, pp. 586–591, 2012. View at Publisher · View at Google Scholar
  96. C. Carreau, G. Flouriot, C. Bennetau-Pelissero, and M. Potier, “Respective contribution exerted by AF-1 and AF-2 transactivation functions in estrogen receptor α induced transcriptional activity by isoflavones and equol: consequence on breast cancer cell proliferation,” Molecular Nutrition and Food Research, vol. 53, no. 5, pp. 652–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. C. De la Parra, E. Otero-Franqui, M. Martinez-Montemayor, and S. Dharmawardhane, “The soy isoflavone equol may increase cancer malignancy via up-regulation of eukaryotic protein synthesis initiation factor eIF4G,” The Journal of Biological Chemistry, vol. 287, pp. 41640–41650, 2012. View at Publisher · View at Google Scholar
  98. Y. Mousavi and H. Adlercreutz, “Genistein is an effective stimulator of sex hormone-binding globulin production in hepatocarcinoma human liver cancer cells and suppresses proliferation of these cells in culture,” Steroids, vol. 58, no. 7, pp. 301–304, 1993. View at Publisher · View at Google Scholar · View at Scopus
  99. B. P. Sampey, T. D. Lewis, C. S. Barbier, L. Makowski, and D. G. Kaufman, “Genistein effects on stromal cells determines epithelial proliferation in endometrial co-cultures,” Experimental and Molecular Pathology, vol. 90, no. 3, pp. 257–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Axelson, D. N. Kirk, R. D. Farrant, G. Cooley, A. M. Lawson, and K. D. Setchell, “The identification of the weak oestrogen equol [7-hydroxy-3-(4′-hydroxyphenyl)chroman] in human urine,” Biochemical Journal, vol. 201, no. 2, pp. 353–357, 1982. View at Scopus
  101. K. D. R. Setchell, C. Clerici, E. D. Lephart et al., “S-equol, a potent ligand for estrogen receptor β, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora,” The American Journal of Clinical Nutrition, vol. 81, no. 5, pp. 1072–1079, 2005. View at Scopus
  102. K. D. R. Setchell and S. J. Cole, “Method of defining equol-producer status and its frequency among vegetarians,” The Journal of Nutrition, vol. 136, no. 8, pp. 2188–2193, 2006. View at Scopus
  103. M. Tanaka, K. Fujimoto, Y. Chihara et al., “Isoflavone supplements stimulated the production of serum equol and decreased the serum dihydrotestosterone levels in healthy male volunteers,” Prostate Cancer and Prostatic Diseases, vol. 12, no. 3, pp. 247–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. K. D. R. Setchell, L. Zimmer-Nechemias, J. Cai, and J. E. Heubi, “Exposure of infants to phyto-oestrogens from soy-based infant formula,” Lancet, vol. 350, no. 9070, pp. 23–27, 1997. View at Publisher · View at Google Scholar · View at Scopus
  105. B. Balakrishnan, E. B. Thorstensen, A. P. Ponnampalam, and M. D. Mitchell, “Transplacental transfer and biotransformation of genistein in human placenta,” Placenta, vol. 31, no. 6, pp. 506–511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. E. Todaka, K. Sakurai, H. Fukata et al., “Fetal exposure to phytoestrogens—the difference in phytoestrogen status between mother and fetus,” Environmental Research, vol. 99, no. 2, pp. 195–203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. E. C. Dinsdale, J. Chen, and W. E. Ward, “Early life exposure to isoflavones adversely affects reproductive health in first but not second generation female CD-1 mice,” The Journal of Nutrition, vol. 141, no. 11, pp. 1996–2002, 2011. View at Publisher · View at Google Scholar
  108. G. Degen, P. Janning, P. Diel, H. Michna, and H. Bolt, “Transplacental transfer of the phytoestrogen daidzein in DA/Han rats,” Archives of Toxicology, vol. 76, no. 1, pp. 23–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. R. R. Newbold, E. P. Banks, B. Bullock, and W. N. Jefferson, “Uterine adenocarcinoma in mice treated neonatally with genistein,” Cancer Research, vol. 61, no. 11, pp. 4325–4328, 2001. View at Scopus
  110. A. B. Wisniewski, S. L. Klein, Y. Lakshmanan, and J. P. Gearhart, “Exposure to genistein during gestation and lactation demasculinizes the reproductive system in rats,” Journal of Urology, vol. 169, no. 4, pp. 1582–1586, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. E. R. Ball, M. K. Caniglia, J. L. Wilcox et al., “Effects of genistein in the maternal diet on reproductive development and spatial learning in male rats,” Hormones and Behavior, vol. 57, no. 3, pp. 313–322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. W. N. Jefferson, H. B. Patisaul, and C. J. Williams, “Reproductive consequences of developmental phytoestrogen exposure,” Reproduction, vol. 143, no. 3, pp. 247–260, 2012. View at Publisher · View at Google Scholar
  113. S. L. Klein, A. B. Wisniewski, A. L. Marson, G. E. Glass, and J. P. Gearhart, “Early exposure to genistein exerts long-lasting effects on the endocrine and immune systems in rats,” Molecular Medicine, vol. 8, no. 11, pp. 742–749, 2002. View at Scopus
  114. D. J. P. Barker, “Maternal nutrition, fetal nutrition, and disease in later life,” Nutrition, vol. 13, no. 9, pp. 807–813, 1997. View at Publisher · View at Google Scholar · View at Scopus
  115. L. Hilakivi-Clarke and S. de Assis, “Fetal origins of breast cancer,” Trends in Endocrinology and Metabolism, vol. 17, no. 9, pp. 340–348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. K. North and J. Golding, “A maternal vegetarian diet in pregnancy is associated with hypospadias. The ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood,” BJU International, vol. 85, no. 1, pp. 107–113, 2000. View at Publisher · View at Google Scholar · View at Scopus
  117. A. Giwercman and N. E. Skakkebaek, “The human testis—an organ at risk?” International Journal of Andrology, vol. 15, no. 5, pp. 373–375, 1992. View at Scopus
  118. J. M. Gilchrist, M. B. Moore, A. Andres, J. A. Estroff, and T. M. Badger, “Ultrasonographic patterns of reproductive organs in infants fed soy formula: comparisons to infants fed breast milk and milk formula,” Journal of Pediatrics, vol. 156, no. 2, pp. 215–220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Wang, J. Li, Y. Gao et al., “Xeno-oestrogens and phyto-oestrogens are alternative ligands for the androgen receptor,” Asian Journal of Andrology, vol. 12, no. 4, pp. 535–547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. J. E. Chavarro, T. L. Toth, S. M. Sadio, and R. Hauser, “Soy food and isoflavone intake in relation to semen quality parameters among men from an infertility clinic,” Human Reproduction, vol. 23, no. 11, pp. 2584–2590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. T. Siepmann, J. Roofeh, F. W. Kiefer, and D. G. Edelson, “Hypogonadism and erectile dysfunction associated with soy product consumption,” Nutrition, vol. 27, no. 7, pp. 859–862, 2011. View at Publisher · View at Google Scholar
  122. J. H. Mitchell, E. Cawood, D. Kinniburgh, A. Provan, A. R. Collins, and D. S. Irvine, “Effect of a phytoestrogen food supplement on reproductive health in normal males,” Clinical Science, vol. 100, no. 6, pp. 613–618, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. F. Eustache, F. Mondon, M. C. Canivenc-Lavier et al., “Chronic dietary exposure to a low-dose mixture of genistein and vinclozolin modifies the reproductive axis, testis transcriptome, and fertility,” Environmental Health Perspectives, vol. 117, no. 8, pp. 1272–1279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. A. F. Molzberger, G. Vollmer, T. Hertrampf, F. J. Möller, S. Kulling, and P. Diel, “In utero and postnatal exposure to isoflavones results in a reduced responsivity of the mammary gland towards estradiol,” Molecular Nutrition & Food Research, vol. 56, pp. 399–409, 2012.
  125. K. L. Greathouse, T. Bredfeldt, J. I. Everitt et al., “Environmental estrogens differentially engage the histone methyltransferase EZH2 to increase risk of uterine tumorigenesis,” Molecular Cancer Research, vol. 10, pp. 546–557, 2012. View at Publisher · View at Google Scholar
  126. J. Kaludjerovic, J. Chen, and W. E. Ward, “Early life exposure to genistein and daidzein disrupts structural development of reproductive organs in female mice,” Journal of Toxicology and Environmental Health. Part A, vol. 75, no. 11, pp. 649–660, 2012. View at Publisher · View at Google Scholar
  127. M. A. Cimafranca, J. Davila, G. C. Ekman et al., “Acute and chronic effects of oral genistein administration in neonatal mice,” Biology of Reproduction, vol. 83, no. 1, pp. 114–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. J. S. Cohain, “Daily intake of isoflavones of >0.07 g associated with endometrial bleeding,” BJOG, vol. 117, no. 4, p. 500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. X. Di, L. Yu, A. B. Moore et al., “A low concentration of genistein induces estrogen receptor-alpha and insulin-like growth factor-I receptor interactions and proliferation in uterine leiomyoma cells,” Human Reproduction, vol. 23, no. 8, pp. 1873–1883, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. A. Bitto, R. Granese, O. Triolo et al., “Genistein aglycone: a new therapeutic approach to reduce endometrial hyperplasia,” Phytomedicine, vol. 17, no. 11, pp. 844–850, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. R. W. Jakes, L. Alexander, S. W. Duffy, J. Leong, L. H. Chen, and W. H. Lee, “Dietary intake of soybean protein and menstrual cycle length in pre-menopausal Singapore Chinese women,” Public Health Nutrition, vol. 4, no. 2, pp. 191–196, 2001. View at Scopus
  132. C. Nagata, M. Kabuto, Y. Kurisu, and H. Shimizu, “Decreased serum estradiol concentration associated with high dietary intake of soy products in premenopausal Japanese women,” Nutrition and Cancer, vol. 29, no. 3, pp. 228–233, 1997. View at Scopus
  133. A. M. Duncan, B. E. Merz, X. Xu, T. C. Nagel, W. R. Phipps, and M. S. Kurzer, “Soy isoflavones exert modest hormonal effects in premenopausal women,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 1, pp. 192–197, 1999. View at Publisher · View at Google Scholar · View at Scopus
  134. W. N. Jefferson, E. Padilla-Banks, and R. R. Newbold, “Disruption of the developing female reproductive system by phytoestrogens: genistein as an example,” Molecular Nutrition and Food Research, vol. 51, no. 7, pp. 832–844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. W. N. Jefferson, D. Doerge, E. Padilla-Banks, K. A. Woodling, G. E. Kissling, and R. Newbold, “Oral exposure to genistin, the glycosylated form of genistein, during neonatal life adversely affects the female reproductive system,” Environmental Health Perspectives, vol. 117, no. 12, pp. 1883–1889, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. P. Amato, R. L. Young, F. M. Steinberg et al., “Effect of soy isoflavone supplementation on menopausal quality of life,” Menopause, 2012. View at Publisher · View at Google Scholar
  137. A. E. Lethaby, J. Brown, J. Marjoribanks, F. Kronenberg, H. Roberts, and J. Eden, “Phytoestrogens for vasomotor menopausal symptoms,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD001395, 2007. View at Scopus
  138. V. Unfer, M. L. Casini, L. Costabile, M. Mignosa, S. Gerli, and G. C. Di Renzo, “Endometrial effects of long-term treatment with phytoestrogens: a randomized, double-blind, placebo-controlled study,” Fertility and Sterility, vol. 82, no. 1, pp. 145–148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  139. P. D. Chilibeck, H. Vatanparast, R. Pierson et al., “Effect of exercise training combined with isoflavone supplementation on bone and lipids in postmenopausal women: a randomized clinical trial,” Journal of Bone and Mineral Research, vol. 28, no. 4, pp. 780–793, 2013. View at Publisher · View at Google Scholar
  140. N. Colacurci, P. De Franciscis, M. Atlante et al., “Endometrial, breast and liver safety of soy isoflavones plus Lactobacillus sporogenes in post-menopausal women,” Gynecological Endocrinology, vol. 29, no. 3, pp. 209–212, 2013. View at Publisher · View at Google Scholar
  141. L. Ye, M. Y. Chan, and L. K. Leung, “The soy isoflavone genistein induces estrogen synthesis in an extragonadal pathway,” Molecular and Cellular Endocrinology, vol. 302, no. 1, pp. 73–80, 2009. View at Publisher · View at Google Scholar · View at Scopus