About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2013 (2013), Article ID 727164, 8 pages
http://dx.doi.org/10.1155/2013/727164
Research Article

Relationship between Serum Levels of OPG and TGF-β with Decreasing Rate of BMD in Native Chinese Women

Institute of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Renmin-Zhong Road, Changsha, Hunan 410011, China

Received 27 October 2012; Revised 30 December 2012; Accepted 2 January 2013

Academic Editor: Guang-Da Xiang

Copyright © 2013 Xi-Yu Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Janssens, P. Ten Dijke, S. Janssens, and W. Van Hul, “Transforming growth factor-β1 to the bone,” Endocrine Reviews, vol. 26, no. 6, pp. 743–774, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. W. S. Simonet, D. L. Lacey, C. R. Dunstan, et al., “Osteoprotegerin: a novel secreted protein involved in the regulation of bone density,” Cell, vol. 89, no. 2, pp. 309–319, 1997. View at Publisher · View at Google Scholar
  3. L. C. Hofbauer, S. Khosla, C. R. Dunstan, D. L. Lacey, W. J. Boyle, and B. L. Riggs, “The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption,” Journal of Bone and Mineral Research, vol. 15, no. 1, pp. 2–12, 2000. View at Scopus
  4. A. Mizuno, N. Amizuka, K. Irie, et al., “Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin,” Biochemical and Biophysical Research Communications, vol. 247, no. 3, pp. 610–615, 1998. View at Publisher · View at Google Scholar
  5. H. Yasuda, N. Shima, N. Nakagawa et al., “Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3597–3602, 1998. View at Scopus
  6. P. Mezquita-Raya, M. de la Higuera, D. F. García, et al., “The contribution of serum osteoprotegerin to bone mass and vertebral fractures in postmenopausal women,” Osteoporosis International, vol. 16, no. 11, pp. 1368–1374, 2005. View at Publisher · View at Google Scholar
  7. A. Rogers, G. Saleh, R. A. Hannon, D. Greenfield, and R. Eastell, “Circulating estradiol and osteoprotegerin as determinants of bone turnover and bone density in postmenopausal women,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 10, pp. 4470–4475, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Ogawa and S. M. Seyedin, “Purification of transforming growth factors β1 and β2 from bovine bone and cell culture assays,” Methods in Enzymology, vol. 198, pp. 317–327, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. B. H. Thorp, I. Anderson, and S. B. Jakowlew, “Transforming growth factor-B1, -β2 and -β3 in cartilage and bone cells during endochondral ossification in the chick,” Development, vol. 114, no. 4, pp. 907–911, 1992. View at Scopus
  10. L. F. Bonewald and G. R. Mundy, “Role of transforming growth factor-beta in bone remodeling,” Clinical Orthopaedics and Related Research, no. 250, pp. 261–276, 1990. View at Scopus
  11. S. Mohan and D. J. Baylink, “Bone growth factors,” Clinical Orthopaedics and Related Research, no. 263, pp. 30–48, 1991. View at Scopus
  12. M. Centrella, S. Casinghino, R. Ignotz, and T. L. McCarthy, “Multiple regulatory effects by transforming growth factor-β on type I collagen levels in osteoblast-enriched cultures from fetal rat bone,” Endocrinology, vol. 131, no. 6, pp. 2863–2872, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. D. E. Hughes, A. Dai, J. C. Tiffee, H. H. Li, G. R. Munoy, and B. F. Boyce, “Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-,” Nature Medicine, vol. 2, no. 10, pp. 1132–1135, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Beaudreuil, G. Mbalaviele, M. Cohen-Solal, C. Morieux, M. C. De Vernejoul, and P. Orcel, “Short-term local injections of transforming growth factor-β1 decrease ovariectomy-stimulated osteoclastic resorption in vivo in rats,” Journal of Bone and Mineral Research, vol. 10, no. 6, pp. 971–977, 1995. View at Scopus
  15. A. G. Geiser, Q. Q. Zeng, M. Sato, L. M. Helvering, T. Hirano, and C. H. Turner, “Decreased bone mass and bone elasticity in mice lacking the transforming growth factor-β1 gene,” Bone, vol. 23, no. 2, pp. 87–93, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Gazit, Y. Zilberman, G. Turgeman, S. Zhou, and A. Kahn, “Recombinant TGF-beta1 stimulates bone marrow osteoprogenitor cell activity and bone matrix synthesis in osteopenic, old male mice,” Journal of Cellular Biochemistry, vol. 73, no. 3, pp. 379–389, 1999. View at Publisher · View at Google Scholar
  17. M. Machwate, E. Zerath, X. Holy et al., “Systemic administration of transforming growth factor-β2 prevents the impaired bone formation and osteopenia induced by unloading in rats,” Journal of Clinical Investigation, vol. 96, no. 3, pp. 1245–1253, 1995. View at Scopus
  18. B. L. Langdahl, J. Y. Knudsen, H. K. Jensen, N. Gregersen, and E. F. Eriksen, “A sequence variation: 713-8delC in the transforming growth factor-beta 1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women,” Bone, vol. 20, no. 3, pp. 289–294, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. M. E. Joyce, A. B. Roberts, M. B. Sporn, and M. E. Bolander, “Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur,” Journal of Cellular Biochemistry, vol. 110, no. 6, pp. 2195–2207, 1990. View at Publisher · View at Google Scholar
  20. M. Noda and J. J. Camilliere, “In vivo stimulation of bone formation by transforming growth factor-β,” Endocrinology, vol. 124, no. 6, pp. 2991–2994, 1989. View at Scopus
  21. F. L. Cals, C. A. Hellingman, W. Koevoet, J. R. J. D. Baatenburg, and G. J. Osch, “Effects of transforming growth factor-β subtypes on in vitro cartilage production and mineralization of human bone marrow stromal-derived mesenchymal stem cells,” Journal of Tissue Engineering and Regenerative Medicine, vol. 6, no. 1, pp. 68–76, 2012. View at Publisher · View at Google Scholar
  22. K. Fuller, J. M. Lean, K. E. Bayley, M. R. Wani, and T. J. Chambers, “A role for TGFbeta(1) in osteoclast differentiation and survival,” Journal of Cell Science, vol. 113, no. 13, pp. 2445–2453, 2000. View at Scopus
  23. C. Chenu, J. Pfeilschifter, G. R. Mundy, and G. D. Roodman, “Transforming growth factor β inhibits formation of osteoclast-like cells in long-term human marrow cultures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 15, pp. 5683–5687, 1988. View at Scopus
  24. M. Shaarawy, S. Zaki, M. Sheiba, and A. M. El-Minawi, “Circulating levels of osteoclast activating cytokines, interleukin-11 and transforming growth factor-β2, as valuable biomarkers for the assessment of bone turnover in postmenopausal osteoporosis,” Clinical Laboratory, vol. 49, no. 11-12, pp. 625–636, 2003. View at Scopus
  25. X. W. Zhou, X. Y. Wu, L. Luo, et al., “The relationship between bone turnover markers and BMD decreasing rates in Chinese middle-aged women,” Clinica Chimica Acta, vol. 412, no. 17-18, pp. 1648–1657, 2011. View at Publisher · View at Google Scholar
  26. Z. Liu, J. Piao, L. Pang et al., “The diagnostic criteria for primary osteoporosis and the incidence of osteoporosis in China,” Journal of Bone and Mineral Metabolism, vol. 20, no. 4, pp. 181–189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Orimo, Y. Hayashi, M. Fukunaga, et al., “Diagnostic criteria for primary osteoporosis: year 2000 revision,” Journal of Bone and Mineral Metabolism, vol. 19, no. 6, pp. 331–337, 2001. View at Publisher · View at Google Scholar
  28. S. L. Bonnick, C. C. Johnston Jr., M. Kleerekoper, et al., “Importance of precision in bone density measurements,” Journal of Clinical Densitometry, vol. 4, no. 2, pp. 105–110, 2001. View at Publisher · View at Google Scholar
  29. X. P. Wu, E. Y. Liao, H. Zhang, P. F. Shan, X. Z. Cao, and S. P. Liu, “Establishment of BMD reference plots and determination of peak BMD at multiple skeletal regions in mainland Chinese women and the diagnosis of osteoporosis,” Osteoporosis International, vol. 15, no. 1, pp. 71–79, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Kudlacek, B. Schneider, W. Woloszczuk, P. Pietschmann, and R. Willvonseder, “Serum levels of osteoprotegerin increase with age in a healthy adult population,” Bone, vol. 32, no. 6, pp. 681–686, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Ueland, J. Bollerslev, S. G. Wilson et al., “No associations between OPG gene polymorphisms or serum levels and measures of osteoporosis in elderly Australian women,” Bone, vol. 40, no. 1, pp. 175–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. O. S. Indridason, L. Franzson, and G. Sigurdsson, “Serum osteoprotegerin and its relationship with bone mineral density and markers of bone turnover,” Osteoporosis International, vol. 16, no. 4, pp. 417–423, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. E. J. Samelson, K. E. Broe, S. Demissie, et al., “Increased plasma osteoprotegerin concentrations are associated with indices of bone strength of the hip,” Journal of Clinical Endocrinology & Metabolism, vol. 93, no. 5, pp. 1789–1795, 2008. View at Publisher · View at Google Scholar
  34. L. Jørgensen, A. Vik, N. Emaus, et al., “Bone loss in relation to serum levels of osteoprotegerin and nuclear factor-kappaB ligand: the Tromsø Study,” Osteoporosis International, vol. 21, no. 6, pp. 931–938, 2010. View at Publisher · View at Google Scholar
  35. Y. Mochizuki, N. Banba, Y. Hattori, and T. Monden, “Correlation between serum osteoprotegerin and biomarkers of bone metabolism during anti-thyroid treatment in patients with Graves' disease,” Hormone Research, vol. 66, no. 5, pp. 236–239, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. A. R. Moschen, A. Kaser, B. Enrich et al., “The RANKL/OPG system is activated in inflammatory bowel diseases and relates to the state or bone loss,” Gut, vol. 54, no. 4, pp. 479–487, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Holecki, B. Zahorska-Markiewicz, J. Janowska et al., “Osteoprotegerin—does it play a protective role in the pathogenesis of bone loss in obese perimenopausal women?” Endokrynologia Polska, vol. 58, no. 1, pp. 7–10, 2007. View at Scopus
  38. F. E. A. McGuigan, H. M. Macdonald, A. Bassiti et al., “Large-scale population-based study shows no association between common polymorphisms of the TGFB1 gene and BMD in women,” Journal of Bone and Mineral Research, vol. 22, no. 2, pp. 195–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Hinke, T. Seck, C. Clanget, C. Scheidt-Nave, R. Ziegler, and J. Pfeilschifter, “Association of transforming growth factor-β1 (TGFβ1) T29→C gene polymorphism with bone mineral density (BMD), changes in BMD, and serum concentrations of TGF-β1 in a population-based sample of postmenopausal German women,” Calcified Tissue International, vol. 69, no. 6, pp. 315–320, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. H. H. Lau, A. Y. Ho, K. D. Luk, and A. W. Kung, “Transforming growth factor-beta1 gene polymorphisms and bone turnover, bone mineral density and fracture risk in southern Chinese women,” Calcified Tissue International, vol. 74, no. 6, pp. 516–521, 2004. View at Publisher · View at Google Scholar
  41. Y. Yamada, A. Miyauchi, J. Goto, et al., “Association of a polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women,” Journal of Bone and Mineral Research, vol. 13, no. 10, pp. 1569–1576, 1998.
  42. Y. Yamada, A. Miyauchi, Y. Takagi, M. Tanaka, M. Mizuno, and A. Harada, “Association of the C-509→T polymorphism, alone or in combination with the T869→C polymorphism, of the transforming growth factor-beta1 gene with bone mineral density and genetic susceptibility to osteoporosis in Japanese women,” Journal of Molecular Medicine, vol. 79, no. 2, pp. 149–156, 2001. View at Scopus
  43. B. Akinci, F. Bayraktar, A. Saklamaz, et al., “Low transforming growth factor-beta1 serum levels in idiopathic male osteoporosis,” Journal of Endocrinological Investigation, vol. 30, no. 5, pp. 350–355, 2007.
  44. A. Wiercinska-Drapalo, J. Jaroszewicz, E. Tarasow, R. Flisiak, and D. Prokopowicz, “Transforming growth factor beta(1) and prostaglandin E2 concentrations are associated with bone formation markers in ulcerative colitis patients,” Prostaglandins and Other Lipid Mediators, vol. 78, no. 1–4, pp. 160–168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Yanagisawa, Y. Yanagi, Y. Masuhiro et al., “Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators,” Science, vol. 283, no. 5406, pp. 1317–1321, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Mori, N. Fuku, Y. Chiba et al., “Cooperative effect of serum 25-hydroxyvitamin D concentration and a polymorphism of transforming growth factor-β1 gene on the prevalence of vertebral fractures in postmenopausal osteoporosis,” Journal of Bone and Mineral Metabolism, vol. 28, no. 4, pp. 446–450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Krast, G. Gorny, R. J. Sells Galvin, and M. J. Oursler, “Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-β regulation of osteoclast differentiation,” Journal of Cellular Physiology, vol. 200, no. 1, pp. 99–106, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Toom, A. Arend, D. Gunnarsson et al., “Bone formation zones in heterotopic ossifications: histologic findings and increased expression of bone morphogenetic protein 2 and transforming growth factors β2 and β3,” Calcified Tissue International, vol. 80, no. 4, pp. 259–267, 2007. View at Publisher · View at Google Scholar · View at Scopus