About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2013 (2013), Article ID 846480, 10 pages
http://dx.doi.org/10.1155/2013/846480
Review Article

Endocrine Actions of Osteocalcin

Department of Clinical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy

Received 28 December 2012; Revised 1 April 2013; Accepted 2 April 2013

Academic Editor: Yuichiro Nishida

Copyright © 2013 Aurora Patti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Razzaque, “Osteocalcin: a pivotal mediator or an innocent bystander in energy metabolism?” Nephrology Dialysis Transplantation, vol. 26, no. 1, pp. 42–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. P. V. Hauschka, J. B. Lian, D. E. Cole, and C. M. Gundberg, “Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone,” Physiological Reviews, vol. 69, no. 3, pp. 990–1047, 1989. View at Scopus
  3. C. M. Nielsen-Marsh, M. P. Richards, P. V. Hauschka et al., “Osteocalcin protein sequences of Neanderthals and modern primates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 12, pp. 4409–4413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. R. Villafán-Bernal, S. Sánchez-Enríquez, and J. F. Muñoz-Valle, “Molecular modulation of osteocalcin and its relevance in diabetes,” International Journal of Molecular Medicine, vol. 28, pp. 283–293, 2011.
  5. S. L. Booth and A. A. Rajabi, “Determinants of vitamin K status in humans,” Vitamins and Hormones, vol. 78, pp. 1–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. L. Booth, A. Centi, S. R. Smith, and C. Gundberg, “The role of osteocalcin in human glucose metabolism: marker or mediator?” Nature Reviews Endocrinology, vol. 9, no. 1, pp. 43–55, 2013.
  7. G. R. Mundy and J. W. Poser, “Chemotactic activity of the γ-carboxyglutamic acid containing protein in bone,” Calcified Tissue International, vol. 35, no. 2, pp. 164–168, 1983. View at Scopus
  8. J. Glowacki and J. B. Lian, “Impaired recruitment and differentiation of osteoclast progenitors by osteocalcin-deplete bone implants,” Cell Differentiation, vol. 21, no. 4, pp. 247–254, 1987. View at Scopus
  9. P. Ducy, C. Desbois, B. Boyce et al., “Increased bone formation in osteocalcin-deficient mice,” Nature, vol. 382, no. 6590, pp. 448–452, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. K. W. Ng, “Regulation of glucose metabolism and the skeleton,” Clinical Endocrinology, vol. 75, no. 2, pp. 147–155, 2011. View at Publisher · View at Google Scholar
  11. P. Ducy, “The role of osteocalcin in the endocrine cross-talk between bone remodeling and energy metabolism,” Diabetologia, vol. 54, no. 6, pp. 1291–1297, 2011. View at Publisher · View at Google Scholar
  12. G. Karsenty and M. Ferron, “The contribution of bone to whole-organism physiology,” Nature, vol. 481, pp. 314–320, 2012. View at Publisher · View at Google Scholar
  13. N. K. Lee, H. Sowa, E. Hinoi et al., “Endocrine regulation of energy metabolism by the skeleton,” Cell, vol. 130, no. 3, pp. 456–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. L. J. Mauro, E. A. Olmsted, B. M. Skrobacz, R. J. Mourey, A. R. Davis, and J. E. Dixon, “Identification of a hormonally regulated protein tyrosine phosphatase associated with bone and testicular differentiation,” Journal of Biological Chemistry, vol. 269, no. 48, pp. 30659–30667, 1994. View at Scopus
  15. R. Dacquin, P. J. Mee, J. Kawaguchi et al., “Knock-in of nuclear localised β-galactosidase reveals that the tyrosine phosphatase Ptprv is specifically expressed in cells of the bone collar,” Developmental Dynamics, vol. 229, no. 4, pp. 826–834, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Ferron, E. Hinoi, G. Karsenty, and P. Ducy, “Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 13, pp. 5266–5270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Yoshikawa, A. Kode, L. Xu et al., “Genetic evidence points to an osteocalcin-independent influence of osteoblasts on energy metabolism,” Journal of Bone and Mineral Research, vol. 26, no. 9, pp. 2012–2025, 2011. View at Publisher · View at Google Scholar
  18. K. Fulzele and T. L. Clemens, “Novel functions for insulin in bone,” Bone, vol. 50, no. 2, pp. 452–456, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. K. K. Pun, P. Lau, and P. W. M. Ho, “The characterization, regulation, and function of insulin receptors on osteoblast-like clonal osteosarcoma cell line,” Journal of Bone and Mineral Research, vol. 4, no. 6, pp. 853–862, 1989. View at Scopus
  20. B. E. Kream, M. D. Smith, E. Canalis, and L. G. Raisz, “Characterization of the effect of insulin on collagen synthesis in fetal rat bone,” Endocrinology, vol. 116, no. 1, pp. 296–302, 1985. View at Scopus
  21. T. J. Hahn, S. L. Westbrook, T. L. Sullivan, W. G. Goodman, and L. R. Halstead, “Glucose transport in osteoblast-enriched bone explants: characterization and insulin regulation,” Journal of Bone and Mineral Research, vol. 3, no. 3, pp. 359–365, 1988. View at Scopus
  22. K. Fulzele, R. C. Riddle, D. J. DiGirolamo et al., “Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition,” Cell, vol. 142, no. 2, pp. 309–319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Merlotti, L. Gennari, F. Dotta, D. Lauro, and R. Nuti, “Mechanisms of impaired bone strength in type 1 and 2 diabetes,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 20, no. 9, pp. 683–690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Blüher, M. D. Michael, O. D. Peroni et al., “Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance,” Developmental Cell, vol. 3, no. 1, pp. 25–38, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. J. C. Brüning, M. D. Michael, J. N. Winnay et al., “A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance,” Molecular Cell, vol. 2, no. 5, pp. 559–569, 1998. View at Scopus
  26. M. Ferron, J. Wei, T. Yoshizawa et al., “Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism,” Cell, vol. 142, no. 2, pp. 296–308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Scimeca, A. Franchi, C. Trojani et al., “The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants,” Bone, vol. 26, no. 3, pp. 207–213, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Ferron, M. D. McKee, R. L. Levine, P. Ducy, and G. Karsenty, “Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice,” Bone, vol. 50, no. 2, pp. 568–575, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. T. C. Brennan-Speranza, H. Henneicke, S. J. Gasparini et al., “Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism,” The Journal of Clinical Investigation, vol. 122, no. 11, pp. 4172–4189, 2012.
  30. W. Cousin, A. Courseaux, A. Ladoux, C. Dani, and P. Peraldi, “Cloning of hOST-PTP: the only example of a protein-tyrosine-phosphatase the function of which has been lost between rodent and human,” Biochemical and Biophysical Research Communications, vol. 321, no. 1, pp. 259–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. C. B. Confavreux, O. Borel, F. Lee et al., “Osteoid osteoma is an osteocalcinoma affecting glucose metabolism,” Osteoporosis International, vol. 23, no. 5, pp. 1645–1650, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Schwetz, T. Pieber, and B. Obermayer-Pietsch, “The endocrine role of the skeleton: background and clinical evidence,” European Journal of Endocrinology, vol. 166, no. 6, pp. 959–967, 2012. View at Publisher · View at Google Scholar
  33. J. A. Im, B. P. Yu, J. Y. Jeon, and S. H. Kim, “Relationship between osteocalcin and glucose metabolism in postmenopausal women,” Clinica Chimica Acta, vol. 396, no. 1-2, pp. 66–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. G. Pittas, S. S. Harris, M. Eliades, P. Stark, and B. Dawson-Hughes, “Association between serum osteocalcin and markers of metabolic phenotype,” The Journal of Clinical Endocrinology & Metabolism, vol. 94, no. 3, pp. 827–832, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Kindblom, C. Ohlsson, O. Ljunggren et al., “Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men,” Journal of Bone and Mineral Research, vol. 24, no. 5, pp. 785–791, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. A. García-Martín, M. Cortés-Berdonces, I. Luque-Fernández, P. Rozas-Moreno, M. Quesada-Charneco, and M. Muñoz-Torres, “Osteocalcin as a marker of metabolic risk in healthy postmenopausal women,” Menopause, vol. 18, no. 5, pp. 537–541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. C. Hwang, I. K. Jeong, K. J. Ahn, and H. Y. Chung, “Circulating osteocalcin level is associated with improved glucose tolerance, insulin secretion and sensitivity independent of the plasma adiponectin level,” Osteoporosis International, vol. 23, no. 4, pp. 1337–1342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. H. A. Weiler, J. Lowe, J. Krahn, and W. D. Leslie, “Osteocalcin and vitamin D status are inversely associated with homeostatic model assessment of insulin resistance in Canadian aboriginal and white women: the first nations bone health study,” The Journal of Nutritional Biochemistry, vol. 24, no. 2, pp. 412–418, 2012. View at Publisher · View at Google Scholar
  39. S. W. Lee, H. H. Jo, M. R. Kim, Y. O. You, and J. H. Kim, “Association between obesity, metabolic risks and serum osteocalcin level in postmenopausal women,” Gynecological Endocrinology, vol. 28, no. 6, pp. 472–477, 2012. View at Publisher · View at Google Scholar
  40. K. S. Gravenstein, J. K. Napora, R. G. Short et al., “Cross-sectional evidence of a signaling pathway from bone homeostasis to glucose metabolism,” The Journal of Clinical Endocrinology & Metabolism, vol. 96, no. 6, pp. E884–E890, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Ngarmukos, L. O. Chailurkit, S. Chanprasertyothin, B. Hengprasith, P. Sritara, and B. Ongphiphadhanakul, “A reduced serum level of total osteocalcin in men predicts the development of diabetes in a long-term follow-up cohort,” Clinical Endocrinology, vol. 77, no. 1, pp. 42–46, 2012. View at Publisher · View at Google Scholar
  42. I. Kanazawa, T. Yamaguchi, M. Yamamoto et al., “Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus,” The Journal of Clinical Endocrinology & Metabolism, vol. 94, no. 1, pp. 45–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. B. B. Yeap, S. A. P. Chubb, L. Flicker et al., “Reduced serum total osteocalcin is associated with metabolic syndrome in older men via waist circumference, hyperglycemia, and triglyceride levels,” European Journal of Endocrinology, vol. 163, no. 2, pp. 265–272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. U. Saleem, T. H. Mosley, and I. J. Kullo, “Serum osteocalcin is associated with measures of insulin resistance, adipokine levels, and the presence of metabolic syndrome,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 7, pp. 1474–1478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. I. Kanazawa, T. Yamaguchi, Y. Tada, M. Yamauchi, S. Yano, and T. Sugimoto, “Serum osteocalcin level is positively associated with insulin sensitivity and secretion in patients with type 2 diabetes,” Bone, vol. 48, no. 4, pp. 720–725, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Bao, M. Zhou, Z. Lu et al., “Serum levels of osteocalcin are inversely associated with the metabolic syndrome and the severity of coronary artery disease in Chinese men,” Clinical Endocrinology, vol. 75, no. 2, pp. 196–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Iglesias, F. Arrieta, M. Piñera et al., “Serum concentrations of osteocalcin, procollagen type 1 N-terminal propeptide and β-CrossLaps in obese subjects with varying degrees of glucose tolerance,” Clinical Endocrinology, vol. 75, no. 2, pp. 184–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Tan, Y. Gao, X. Yang et al., “Low serum osteocalcin level is a potential marker for metabolic syndrome: results from a Chinese male population survey,” Metabolism, vol. 60, no. 8, pp. 1186–1192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. M. Oosterwerff, N. M. van Schoor, P. Lips, and E. M. Eekhoff, “Osteocalcin as a predictor of the metabolic syndrome in older persons: a population-based study,” Clinical Endocrinology, vol. 78, no. 2, pp. 242–247, 2012. View at Publisher · View at Google Scholar
  50. T. Yamashita, K. Okano, Y. Tsuruta, T. Akiba, and K. Nitta, “Serum osteocalcin levels are useful as a predictor of cardiovascular events in maintenance hemodialysis patients,” International Urology and Nephrology, vol. 45, no. 1, pp. 207–214, 2012. View at Publisher · View at Google Scholar
  51. P. Pennisi, S. S. Signorelli, S. Riccobene et al., “Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels,” Osteoporosis International, vol. 15, no. 5, pp. 389–395, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. C. B. Confavreux, P. Szulc, R. Casey et al., “Higher serum osteocalcin is associated with lower abdominal aortic calcification progression and longer 10-year survival in elderly men of the MINOS cohort,” The Journal of Clinical Endocrinology & Metabolism, vol. 98, no. 3, pp. 1084–1092, 2013. View at Publisher · View at Google Scholar
  53. R. Reyes-Garcia, P. Rozas-Moreno, J. J. Jimenez-Moleon et al., “Relationship between serum levels of osteocalcin and atherosclerotic disease in type 2 diabetes,” Diabetes & Metabolism, vol. 38, no. 1, pp. 76–81, 2012. View at Publisher · View at Google Scholar
  54. A. N. Kapustin and C. M. Shanahan, “Osteocalcin: a novel vascular metabolic and osteoinductive factor?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 10, pp. 2169–271, 2011. View at Publisher · View at Google Scholar
  55. B. B. Yeap, S. A. P. Chubb, L. Flicker et al., “Associations of total osteocalcin with all-cause and cardiovascular mortality in older men: the health in men study,” Osteoporosis International, vol. 23, no. 2, pp. 599–606, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. A. J. Flammer, M. Gössl, R. J. Widmer et al., “Osteocalcin positive CD133+/CD34-/KDR+ progenitor cells as an independent marker for unstable atherosclerosis,” European Heart Journal, vol. 33, no. 23, pp. 2963–2969, 2012. View at Publisher · View at Google Scholar
  57. Y. C. Hwang, I. K. Jeong, K. J. Ahn, and H. Y. Chung, “The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced β-cell function in middle-aged male subjects,” Diabetes/Metabolism Research and Reviews, vol. 25, no. 8, pp. 768–772, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. M. K. Shea, C. M. Gundberg, J. B. Meigs et al., “γ-carboxylation of osteocalcin and insulin resistance in older men and women,” The American Journal of Clinical Nutrition, vol. 90, no. 5, pp. 1230–1235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Kanazawa, T. Yamaguchi, M. Yamauchi et al., “Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus,” Osteoporosis International, vol. 22, no. 1, pp. 187–194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. H. J. Choi, J. Yu, H. Choi et al., “Vitamin K2 supplementation improves insulin sensitivity via osteocalcin metabolism: a placebo-controlled trial,” Diabetes Care, vol. 34, no. 9, p. e147, 2011. View at Publisher · View at Google Scholar
  61. N. K. Pollock, P. J. Bernard, B. A. Gower et al., “Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with β-cell function,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 7, pp. E1092–E1099, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Iki, J. Tamaki, Y. Fujita et al., “Serum undercarboxylated osteocalcin levels are inversely associated with glycemic status and insulin resistance in an elderly Japanese male population: fujiwara-kyo osteoporosis risk in men (FORMEN) study,” Osteoporosis International, vol. 23, no. 2, pp. 761–770, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. L. E. Polgreen, D. R. Jacobs, B. M. Nathan, J. Steinberger, A. Moran, and A. R. Sinaiko, “Association of osteocalcin with obesity, insulin resistance, and cardiovascular risk factors in young adults,” Obesity, vol. 20, no. 11, pp. 2194–2201, 2012. View at Publisher · View at Google Scholar
  64. M. Bulló, J. M. Moreno-Navarrete, J. M. Fernández-Real, and J. Salas-Salvadó, “Total and undercarboxylated osteocalcin predict changes in insulin sensitivity and β cell function in elderly men at high cardiovascular risk,” The American Journal of Clinical Nutrition, vol. 95, pp. 249–55, 2012. View at Publisher · View at Google Scholar
  65. S. Okuno, E. Ishimura, N. Tsuboniwa et al., “Significant inverse relationship between serum undercarboxylated osteocalcin and glycemic control in maintenance hemodialysis patients,” Osteoporosis International, vol. 24, no. 2, pp. 605–612, 2012. View at Publisher · View at Google Scholar
  66. C. M. Gundberg, S. D. Nieman, S. Abrams, and H. Rosen, “Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 9, pp. 3258–3266, 1998. View at Publisher · View at Google Scholar · View at Scopus
  67. C. M. Gundberg, J. B. Lian, and S. L. Booth, “Vitamin K-dependent carboxylation of osteocalcin: friend or foe? 2012,” Advances in Nutrition, vol. 3, no. 2, pp. 149–157.
  68. L. Maïmoun and C. Sultan, “Effect of physical activity on calcium homeostasis and calciotropic hormones: a review,” Calcified Tissue International, vol. 85, no. 4, pp. 277–286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. I. Levinger, R. Zebaze, G. Jerums, D. L. Hare, S. Selig, and E. Seeman, “The effect of acute exercise on undercarboxylated osteocalcin in obese men,” Osteoporosis International, vol. 22, no. 5, pp. 1621–1626, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. J. M. Fernández-Real, M. Izquierdo, F. Ortega et al., “The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 1, pp. 237–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Mokuda, Y. Okuda, M. Onishi, et al., “Post-menopausal women with rheumatoid arthritis who are treated with raloxifene or alendronate or glucocorticoids have lower serum undercarboxylated osteocalcin levels,” Journal of Endocrinological Investigation, vol. 35, no. 7, pp. 661–664, 2011.
  72. P. J. Simm, J. Johannesen, J. Briody, et al., “Zoledronic acid improves bone mineral density, reduces bone turnover and improves skeletal architecture over 2 years of treatment in children with secondary osteoporosis,” Bone, vol. 49, no. 5, pp. 939–943, 2011. View at Publisher · View at Google Scholar
  73. P. Vestergaard, “Risk of newly diagnosed type 2 diabetes is reduced in users of alendronate,” Calcified Tissue International, vol. 89, no. 4, pp. 265–270, 2011. View at Publisher · View at Google Scholar
  74. A. V. Schwartz, A. L. Schafer, A. Grey et al., “Effects of antiresorptive therapies on glucose metabolism: results from the FIT, HORIZON-PFT and FREEDOM trials,” Journal of Bone and Mineral Research, vol. 2013, 2013. View at Publisher · View at Google Scholar
  75. A. L. Schafer, D. E. Sellmeyer, A. V. Schwartz, et al., “Change in undercarboxylated osteocalcin is associated with changes in body weight, fat mass, and adiponectin: parathyroid hormone (1-84) or alendronate therapy in postmenopausal women with osteoporosis (the PaTH study),” The Journal of Clinical Endocrinology & Metabolism, vol. 96, no. 12, pp. E1982–E1989, 2011. View at Publisher · View at Google Scholar
  76. N. G. Forouhi, Z. Ye, A. P. Rickard et al., “Circulating 25-hydroxyvitamin D concentration and the risk of type 2 diabetes: results from the European Prospective Investigation into Cancer (EPIC)-Norfolk cohort and updated meta-analysis of prospective studies,” Diabetologia, vol. 55, no. 8, pp. 2173–2182, 2012. View at Publisher · View at Google Scholar
  77. H. Wolden-Kirk, L. Overbergh, H. T. Christesen, K. Brusgaard, and C. Mathieu, “Vitamin D and diabetes: its importance for β cell and immune function,” Molecular and Cellular Endocrinology, vol. 347, no. 1-2, pp. 106–120, 2011. View at Publisher · View at Google Scholar
  78. F. Oury, G. Sumara, O. Sumara et al., “Endocrine regulation of male fertility by the skeleton,” Cell, vol. 144, no. 5, pp. 796–809, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Kirmani, E. J. Atkinson, L. J. Melton 3rd, B. L. Riggs, S. Amin, and S. Khosla, “Relationship of testosterone and osteocalcin levels during growth,” Journal of Bone and Mineral Research, vol. 26, no. 9, pp. 2212–2216, 2011. View at Publisher · View at Google Scholar
  80. I. Kanazawa, K. Tanaka, N. Ogawa, M. Yamauchi, T. Yamaguchi, and T. Sugimoto, “Undercarboxylated osteocalcin is positively associated with free testosterone in male patients with type 2 diabetes mellitus,” Osteoporosis International, vol. 24, no. 3, pp. 1115–1119, 20122013.
  81. A. Hannemann, S. Breer, H. Wallaschofski et al., “Osteocalcin is associated with testosterone in the general population and selected patients with bone disorders,” Andrology, vol. 2013, 2013. View at Publisher · View at Google Scholar
  82. E. Seeman, “Pathogenesis of bone fragility in women and men,” The Lancet, vol. 359, no. 9320, pp. 1841–1850, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. G. Corona, M. Monami, G. Rastrelli, et al., “Type 2 diabetes mellitus and testosterone: a meta-analysis study,” International Journal of Andrology, vol. 34, no. 6, part 1, pp. 528–540, 2011. View at Publisher · View at Google Scholar