About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2013 (2013), Article ID 972962, 12 pages
http://dx.doi.org/10.1155/2013/972962
Research Article

Major Histocompatibility Class II Pathway Is Not Required for the Development of Nonalcoholic Fatty Liver Disease in Mice

1Department of Physiology, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
2Center for Integrative Genomics, University of Lausanne, 1010 Lausanne, Switzerland
3Nestlé Research Center, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland

Received 12 February 2013; Accepted 22 March 2013

Academic Editor: Jun Ding

Copyright © 2013 Gilles Willemin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Blum, P. A. Wearsch, and P. Cresswell, “Pathways of antigen processing,” Annual Review of Immunology, vol. 31, pp. 443–447, 2013. View at Publisher · View at Google Scholar
  2. N. A. Mitchison, “T-cell-B-cell cooperation,” Nature Reviews Immunology, vol. 4, pp. 308–312, 2004. View at Publisher · View at Google Scholar
  3. J. B. Singer, S. Lewitzky, E. Leroy et al., “A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury,” Nature Genetics, vol. 42, no. 8, pp. 711–714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Geusens and W. Lems, “Efficacy and tolerability of lumiracoxib, a highly selective cyclo-oxygenase-2 (COX2) inhibitor, in the management of pain and osteoarthritis,” Therapeutics and Clinical Risk Management, vol. 4, no. 2, pp. 337–344, 2008. View at Scopus
  5. L. Laine, W. B. White, A. Rostom, and M. Hochberg, “COX-2 selective inhibitors in the treatment of osteoarthritis,” Seminars in Arthritis and Rheumatism, vol. 38, no. 3, pp. 165–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. P. I. Pillans, R. A. Ghiculescu, G. Lampe, R. Wilson, R. Wong, and G. A. Macdonald, “Severe acute liver injury associated with lumiracoxib,” Journal of Gastroenterology and Hepatology, vol. 27, no. 6, pp. 1102–1105, 2012. View at Publisher · View at Google Scholar
  7. R. A. Moore, S. Derry, and H. J. McQuay, “Cyclo-oxygenase-2 selective inhibitors and nonsteroidal anti-inflammatory drugs: balancing gastrointestinal and cardiovascular risk,” BMC Musculoskeletal Disorders, vol. 8, article 73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. I. Lucena, M. Molokhia, Y. Shen et al., “Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class i and II alleles,” Gastroenterology, vol. 141, no. 1, pp. 338–347, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. R. J. Andrade, M. I. Lucena, A. Alonso et al., “HLA class II genotype influences the type of liver injury in drug-induced idiosyncratic liver disease,” Hepatology, vol. 39, no. 6, pp. 1603–1612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. G. M. Hirschfield, X. Liu, C. Xu et al., “Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants,” The New England Journal of Medicine, vol. 360, no. 24, pp. 2544–2555, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Wakabayashi, Z. X. Lian, Y. Moritoki et al., “IL-2 receptor α-/- mice and the development of primary biliary cirrhosis,” Hepatology, vol. 44, no. 5, pp. 1240–1249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Irie, Y. Wu, L. S. Wicker et al., “NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis,” Journal of Experimental Medicine, vol. 203, no. 5, pp. 1209–1219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. El-Ghaiesh, J. P. Sanderson, J. Farrell et al., “Characterization of drug-specific lymphocyte responses in a patient with drug-induced liver injury,” Journal of Allergy and Clinical Immunology, vol. 128, no. 3, pp. 680–683, 2011. View at Publisher · View at Google Scholar
  14. Y. Baba and K. Doi, “MHC class II-related genes expression in porcine-serum-induced rat hepatic fibrosis,” Experimental and Molecular Pathology, vol. 77, no. 3, pp. 214–221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Baba, K. Saeki, T. Onodera, and K. Doi, “Serological and immunohistochemical studies on porcine-serum-induced hepatic fibrosis in rats,” Experimental and Molecular Pathology, vol. 79, no. 3, pp. 229–235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. M. Younossi, M. Stepanova, M. Afendy et al., “Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008,” Clinical Gastroenterology and Hepatology, vol. 9, no. 6, pp. 524.e1–530.e1, 2011. View at Publisher · View at Google Scholar
  17. G. Vernon, A. Baranova, and Z. M. Younossi, “Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults,” Alimentary Pharmacology and Therapeutics, vol. 34, no. 3, pp. 274–285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. S. Delgado, “Evolving trends in nonalcoholic fatty liver disease,” European Journal of Internal Medicine, vol. 19, no. 2, pp. 75–82, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Madsen, N. Labrecque, J. Engberg et al., “Mice lacking all conventional MHC class II genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 18, pp. 10338–10343, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. R. L. DeLellis and M. C. Bowling, “The use of sirius red and congo red staining in routine histopathology,” Human Pathology, vol. 1, no. 4, p. 655, 1970. View at Scopus
  21. J. Folch, M. Lees, and G. H. S. Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of biological chemistry, vol. 226, no. 1, pp. 497–509, 1957. View at Scopus
  22. F. Snyder and N. Stephens, “A simplified spectrophotometric determination of ester groups in lipids,” Biochimica et Biophysica Acta, vol. 34, pp. 244–245, 1959. View at Scopus
  23. G. C. Burdge, P. Wright, A. E. Jones, and S. A. Wootton, “A method for separation of phosphatidylcholine, triacylglycerol, non-esterified fatty acids and cholesterol esters from plasma by solid-phase extraction,” The British Journal of Nutrition, vol. 84, no. 5, pp. 781–787, 2000. View at Scopus
  24. G. T. Y. Choi, M. Casu, and W. A. Gibbons, “N.m.r. lipid profiles of cells, tissues and body fluids: neutral, non-acidic and acidic phospholipid analysis of Bond Elut chromatographic fractions,” Biochemical Journal, vol. 290, part 3, pp. 717–721, 1993. View at Scopus
  25. G. E. Truett, P. Heeger, R. L. Mynatt, A. A. Truett, J. A. Walker, and M. L. Warman, “Preparation of PCR-quality mouse genomic dna with hot sodium hydroxide and tris (HotSHOT),” BioTechniques, vol. 29, no. 1, pp. 52–54, 2000. View at Scopus
  26. P. Chomczynski and N. Sacchi, “The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on,” Nature Protocols, vol. 1, no. 2, pp. 581–585, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. H. Schefe, K. E. Lehmann, I. R. Buschmann, T. Unger, and H. Funke-Kaiser, “Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression's C T difference” formula,” Journal of Molecular Medicine, vol. 84, no. 11, pp. 901–910, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Z. Larter and M. M. Yeh, “Animal models of NASH: getting both pathology and metabolic context right,” Journal of Gastroenterology and Hepatology, vol. 23, no. 11, pp. 1635–1648, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Kiki, B. Z. Altunkaynak, M. E. Altunkaynak, O. Vuraler, D. Unal, and S. Kaplan, “Effect of high fat diet on the volume of liver and quantitative feature of Kupffer cells in the female rat: a stereological and ultrastructural study,” Obesity Surgery, vol. 17, no. 10, pp. 1381–1388, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Rafiq and Z. M. Younossi, “Effects of weight loss on nonalcoholic fatty liver disease,” Seminars in Liver Disease, vol. 28, no. 4, pp. 427–433, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. O. F. W. James and C. P. Day, “Non-alcoholic steatohepatitis (NASH): a disease of emerging identity and importance,” Journal of Hepatology, vol. 29, no. 3, pp. 495–501, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Youssef and A. J. McCullough, “Diabetes mellitus, obesity, and hepatic steatosis,” Seminars in Gastrointestinal Disease, vol. 13, no. 1, pp. 17–30, 2002. View at Scopus
  33. M. Celikbilek, H. Selcuk, and U. Yilmaz, “A new risk factor for the development of non-alcoholic fatty liver disease: HLA complex genes,” Turkish Journal of Gastroenterology, vol. 22, pp. 395–399, 2011.
  34. C. Renou, P. Halfon, S. Pol et al., “Histological features and HLA class II alleles in hepatitis C virus chronically infected patients with persistently normal alanine aminotransferase levels,” Gut, vol. 51, no. 4, pp. 585–590, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Thursz, R. Yallop, R. Goldin, C. Trepo, and H. C. Thomas, “Influence of MHC class II genotype on outcome of infection with hepatitis C virus,” The Lancet, vol. 354, no. 9196, pp. 2119–2124, 1999. View at Scopus
  36. Y. Hasegawa-Baba and K. Doi, “Changes in TIMP-1 and -2 expression in the early stage of porcine serum-induced liver fibrosis in rats,” Experimental and Toxicologic Pathology, vol. 63, no. 4, pp. 357–361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. S. L. Friedman, “Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver,” Physiological Reviews, vol. 88, no. 1, pp. 125–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Knittel, L. Müller, B. Saile, and G. Ramadori, “Effect of tumour necrosis factor-α on proliferation, activation and protein synthesis of rat hepatic stellate cells,” Journal of Hepatology, vol. 27, no. 6, pp. 1067–1080, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. J. E. Puche, Y. A. Lee, J. Jiao et al., “A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice,” Hepatology, vol. 57, no. 1, pp. 339–350, 2013. View at Publisher · View at Google Scholar
  40. S. Morini, S. Carotti, G. Carpino et al., “GFAP expression in the liver as an early marker of stellate cells activation,” Italian Journal of Anatomy and Embryology, vol. 110, no. 4, pp. 193–207, 2005. View at Scopus