About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2013 (2013), Article ID 987186, 7 pages
http://dx.doi.org/10.1155/2013/987186
Clinical Study

A Novel, Homozygous c.1502T>G (p.Val501Gly) Mutation in the Thyroid peroxidase Gene in Malaysian Sisters with Congenital Hypothyroidism and Multinodular Goiter

1Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Paediatrics, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
3Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 29 December 2012; Accepted 9 April 2013

Academic Editor: Furio M. Pacini

Copyright © 2013 Ching Chin Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Congenital hypothyroidism (CH) with multinodular goiter (MNG) is uncommonly seen in children. However, CH associated with goiter is often caused by defective Thyroid peroxidase (TPO) gene. In this study, we screened for mutation(s) in the TPO gene in two siblings with CH and MNG and their healthy family members. The two sisters, born to consanguineous parents, were diagnosed with CH during infancy and received treatment since then. They developed MNG during childhood despite adequate L-thyroxine replacement and negative thyroid antibody screening. PCR-amplification of all exons using flanking primers followed by DNA sequencing revealed that the two sisters were homozygous for a novel c.1502T>G mutation. The mutation is predicted to substitute valine for glycine at a highly conserved amino acid residue 501 (p.Val501Gly). Other healthy family members were either heterozygotes or mutation-free. The mutation was not detected in 50 healthy unrelated individuals. In silico analyses using PolyPhen-2 and SIFT predicted that the p.Val501Gly mutation is functionally “damaging.” Tertiary modeling showed structural alterations in the active site of the mutant TPO. In conclusion, a novel mutation, p.Val501Gly, in the TPO gene was detected expanding the mutation spectrum of TPO associated with CH and MNG.