About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2013 (2013), Article ID 987186, 7 pages
http://dx.doi.org/10.1155/2013/987186
Clinical Study

A Novel, Homozygous c.1502T>G (p.Val501Gly) Mutation in the Thyroid peroxidase Gene in Malaysian Sisters with Congenital Hypothyroidism and Multinodular Goiter

1Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Paediatrics, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
3Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 29 December 2012; Accepted 9 April 2013

Academic Editor: Furio M. Pacini

Copyright © 2013 Ching Chin Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Fisher, J. H. Dussault, and T. P. Foley Jr., “Screening for congenital hypothyroidism: results of screening one million North American infants,” Journal of Pediatrics, vol. 94, no. 5, pp. 700–705, 1979. View at Scopus
  2. F. Delange, “Neonatal screening for congenital hypothyroidism in Europe. Report of the Newborn Committee of the European Thyroid Association,” Acta Endocrinologica, vol. 223, pp. 3–29, 1979. View at Scopus
  3. L. L. Wu, B. S. Sazali, N. Adeeb, and B. A. K. Khalid, “Congenital hypothyroid screening using cord blood TSH,” Singapore Medical Journal, vol. 40, no. 1, pp. 23–26, 1999. View at Scopus
  4. A. Gruters, “Congenital hypothyroidism,” Pediatric Annals, vol. 21, no. 1, pp. 15–28, 1992. View at Scopus
  5. A. Mangllabruks, A. E. C. Billerbeck, B. Wajchenberg et al., “Genetic linkage studies of thyroid peroxidase (TPO) gene in families with TPO deficiency,” Journal of Clinical Endocrinology and Metabolism, vol. 72, no. 2, pp. 471–476, 1991. View at Scopus
  6. V. Varela, C. M. Rivolta, S. A. Esperante, L. Gruneiro-Papendieck, A. Chiesa, and H. M. Targovnik, “Three mutations (p.Q36H, p.G418fsX482, and g.IVS19-2A>C) in the dual oxidase 2 gene responsible for congenital goiter and iodide organification defect,” Clinical Chemistry, vol. 52, no. 2, pp. 182–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Pohlenz and S. Refetoff, “Mutations in the sodium/iodide symporter (NIS) gene as a cause for iodide transport defects and congenital hypothyroidism,” Biochimie, vol. 81, no. 5, pp. 469–476, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Ieiri, P. Cochaux, H. M. Targovnik et al., “A 3' splice site mutation in the thyroglobulin gene responsible for congenital goiter with hypothyroidism,” Journal of Clinical Investigation, vol. 88, no. 6, pp. 1901–1905, 1991. View at Scopus
  9. S. Narumi, K. Muroya, Y. Abe et al., “TSHR mutations as a cause of congenital hypothyroidism in Japan: a population-based genetic epidemiology study,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 4, pp. 1317–1323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Endo, S. Onogi, K. Umeki et al., “Regional localization of the gene for thyroid peroxidase to human chromosome 2p25 and mouse chromosome 12C,” Genomics, vol. 25, no. 3, pp. 760–761, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Kimura, T. Kotani, and O. W. McBride, “Human thyroid peroxidase: complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNAs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 16, pp. 5555–5559, 1987. View at Scopus
  12. F. Cetani, S. Costagliola, M. Tonacchera, V. Panneels, G. Vassart, and M. Ludgate, “The thyroperoxidase doublet is not produced by alternative splicing,” Molecular and Cellular Endocrinology, vol. 115, no. 2, pp. 125–132, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Gardas, A. Lewartowska, B. J. Sutton, Z. Pasieka, A. M. Mcgregor, and J. P. Banga, “Human thyroid peroxidase (TPO) isoforms, TPO-1 and TPO-2: analysis of protein expression in Graves' thyroid tissue,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 11, pp. 3752–3757, 1997. View at Scopus
  14. C. Ris-Stalpers and H. Bikker, “Genetics and phenomics of hypothyroidism and goiter due to TPO mutations,” Molecular and Cellular Endocrinology, vol. 322, no. 1-2, pp. 38–43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Bakker, H. Bikker, T. Vulsma, J. S. E. De Randamie, B. M. Wiedijk, and J. J. M. De Vijlder, “Two decades of screening for congenital hypothyroidism in the Netherlands: TPO gene mutations in total iodide organification defects (an update),” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 10, pp. 3708–3712, 2000. View at Scopus
  16. S. M. Park and V. K. K. Chatterjee, “Genetics of congenital hypothyroidism,” Journal of Medical Genetics, vol. 42, no. 5, pp. 379–389, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Fugazzola, N. Cerutti, D. Mannavola et al., “Monoallelic expression of mutant thyroid peroxidase allele causing total iodide organification defect,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 7, pp. 3264–3271, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C. M. Rivolta, S. A. Esperante, L. Gruñeiro-Papendieck et al., “Five novel inactivating mutations in the thyroid peroxidase gene responsible for congenital goiter and iodide organification defect,” Human Mutation, vol. 22, no. 3, p. 259, 2003. View at Scopus
  19. J. Y. Wu, S. G. Shu, C. F. Yang, C. C. Lee, and F. J. Tsai, “Mutation analysis of thyroid peroxidase gene in Chinese patients with total iodide organification defect: identification of five novel mutations,” Journal of Endocrinology, vol. 172, no. 3, pp. 627–635, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. I. A. Adzhubei, S. Schmidt, L. Peshkin et al., “A method and server for predicting damaging missense mutations,” Nature Methods, vol. 7, no. 4, pp. 248–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. P. C. Ng and S. Henikoff, “Predicting deleterious amino acid substitutions,” Genome Research, vol. 11, no. 5, pp. 863–874, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  23. D. W. Mount, “Using the Basic Local Alignment Search Tool (BLAST),” CSH Protocols, 2007. View at Publisher · View at Google Scholar
  24. A. Sali and T. L. Blundell, “Comparative protein modelling by satisfaction of spatial restraints,” Journal of Molecular Biology, vol. 234, no. 3, pp. 779–815, 1993. View at Publisher · View at Google Scholar · View at Scopus
  25. D. A. Case, T. A. Darden, T. E. Cheatham, et al., AMBER 10, University of California, San Francisco, Calif, USA, 2008.
  26. D. A. Case, T. E. Cheatham III, T. Darden et al., “The Amber biomolecular simulation programs,” Journal of Computational Chemistry, vol. 26, no. 16, pp. 1668–1688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Lindorff-Larsen, S. Piana, K. Palmo et al., “Improved side-chain torsion potentials for the Amber ff99SB protein force field,” Proteins, vol. 78, no. 8, pp. 1950–1958, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. A. Laskowski, M. W. MacArthur, D. S. Moss, and J. M. Thornton, “PROCHECK: a program to check the stereochemical quality of protein structures,” Journal of Applied Crystallography, vol. 26, pp. 283–291, 1993.
  29. R. Luthy, J. U. Bowie, and D. Eisenberg, “Assesment of protein models with three-dimensional profiles,” Nature, vol. 356, no. 6364, pp. 83–85, 1992. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Colovos and T. O. Yeates, “Verification of protein structures: patterns of nonbonded atomic interactions,” Protein Science, vol. 2, no. 9, pp. 1511–1519, 1993. View at Scopus
  31. A. Taurog, “Molecular evolution of thyroid peroxidase,” Biochimie, vol. 81, no. 5, pp. 557–562, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Bikker, F. Baas, and J. J. M. De Vijlder, “Molecular analysis of mutated thyroid peroxidase detected in patients with total iodide organification defects,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 2, pp. 649–653, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Al-Fifi and C. Rodd, “Multinodular goiter in children,” Journal of Pediatric Endocrinology and Metabolism, vol. 14, no. 6, pp. 749–756, 2001. View at Scopus
  34. M. Avbelj, H. Tahirovic, M. Debeljak et al., “High prevelance if thyroid peroxidase gene mutations in patients with thyroid dyshormonogenesis,” European Journal of Endocrinology, vol. 156, no. 5, pp. 511–519, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Rodrigues, P. Jorge, J. P. Soares et al., “Mutation screening of the thyroid peroxidase gene in a cohort of 55 Portuguese patients with congenital hypothyroidism,” European Journal of Endocrinology, vol. 152, no. 2, pp. 193–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. J. Betts and R. B. Russell, “Amino acid properties and consequences of substitutions,” in BioinFormatics for Geneticists, M. R. Barnes and I. C. Gray, Eds., pp. 289–316, Wiley, West Sussex, UK, 2003.
  37. J. F. Lagorce, J. C. Thomes, G. Catanzano, J. Buxeraud, M. Raby, and C. Raby, “Formation of molecular iodine during oxidation of iodide by the peroxidase/H2O2 system. Implications for antithyroid therapy,” Biochemical Pharmacology, vol. 42, pp. S89–S92, 1991. View at Publisher · View at Google Scholar · View at Scopus
  38. P. P. Gandolfi, A. Frisina, M. Raffa et al., “The incidence of thyroid carcinoma in multinodular goiter: retrospective analysis,” Acta Biomedica de l'Ateneo Parmense, vol. 75, no. 2, pp. 114–117, 2004. View at Scopus