About this Journal Submit a Manuscript Table of Contents
International Journal of Endocrinology
Volume 2014 (2014), Article ID 561214, 5 pages
http://dx.doi.org/10.1155/2014/561214
Review Article

Vitamin D Binding Protein and Bone Health

Massachusetts General Hospital, Harvard Medical School, 5 Suite 750, 50 Staniford Street, Boston, MA 02114, USA

Received 24 February 2014; Accepted 4 May 2014; Published 1 June 2014

Academic Editor: Xiangbing Wang

Copyright © 2014 Ishir Bhan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Speeckaert, G. Huang, J. R. Delanghe, and Y. E. C. Taes, “Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism,” Clinica Chimica Acta, vol. 372, no. 1-2, pp. 33–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C. A. Piquette, R. Robinson-Hill, and R. O. Webster, “Human monocyte chemotaxis to complement-derived chemotaxins is enhanced by Gc-globulin,” Journal of Leukocyte Biology, vol. 55, no. 3, pp. 349–354, 1994. View at Scopus
  3. O. A. Adebanjo, B. S. Moonga, J. G. Haddad, C. L.-H. Huang, and M. Zaidi, “A possible new role for vitamin D-binding protein in osteoclast control: inhibition of extracellular Ca2+ sensing at low physiological concentrations,” Biochemical and Biophysical Research Communications, vol. 249, no. 3, pp. 668–671, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. S. S. Papiha, L. C. Allcroft, R. M. Kanan, R. M. Francis, and H. K. Datta, “Vitamin D binding protein gene in male osteoporosis: association of plasma DBP and bone mineral density with (TAAA)(n)-Alu polymorphism in DBP,” Calcified Tissue International, vol. 65, no. 4, pp. 262–266, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Cleve and J. Constans, “The mutants of the vitamin-D-binding protein: more than 120 variants of the GC/DBP system,” Vox Sanguinis, vol. 54, no. 4, pp. 215–225, 1988. View at Scopus
  6. J. G. Haddad, “Plasma vitamin D-binding protein (Gc-globulin): multiple tasks,” Journal of Steroid Biochemistry and Molecular Biology, vol. 53, no. 1-6, pp. 579–582, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Arnaud and J. Constans, “Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP),” Human Genetics, vol. 92, no. 2, pp. 183–188, 1993. View at Scopus
  8. T. O. Carpenter, J. H. Zhang, E. Parra et al., “Vitamin D binding protein is a key determinant of 25-hydroxyvitamin D levels in infants and toddlers,” Journal of Bone and Mineral Research, vol. 28, no. 1, pp. 213–221, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. C. E. Powe, M. K. Evans, J. Wenger, et al., “Vitamin D-binding protein and vitamin D status of black Americans and white Americans,” The New England Journal of Medicine, vol. 369, no. 21, pp. 1991–2000, 2013.
  10. A. L. Lauridsen, P. Vestergaard, and E. Nexo, “Mean serum concentration of vitamin D-binding protein (Gc globulin) is related to the Gc phenotype in women,” Clinical Chemistry, vol. 47, no. 4, pp. 753–756, 2001. View at Scopus
  11. J. E. Eichner, J. A. Cauley, R. E. Ferrell, S. R. Cummings, and L. H. Kuller, “Genetic variation in two bone-related proteins: is there an association with bone mineral density or skeletal size in postmenopausal women?” Genetic Epidemiology, vol. 9, no. 3, pp. 177–184, 1992. View at Scopus
  12. Y. Ezura, T. Nakajima, M. Kajita et al., “Association of molecular variants, haplotypes, and linkage disequilibrium within the human vitamin D-binding protein (DBP) gene with postmenopausal bone mineral density,” Journal of Bone and Mineral Research, vol. 18, no. 9, pp. 1642–1649, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. L. Lauridsen, P. Vestergaard, A. P. Hermann, H. J. Moller, L. Mosekilde, and E. Nexo, “Female premenopausal fracture risk is associated with Gc phenotype,” Journal of Bone and Mineral Research, vol. 19, no. 6, pp. 875–881, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. Lauridsen, P. Vestergaard, A. P. Hermann et al., “Plasma concentrations of 25-hydroxy-vitamin D and 1,25-dihydroxy-vitamin D are related to the phenotype of Gc (vitamin D-binding protein): a cross-sectional study on 595—early postmenopausal women,” Calcified Tissue International, vol. 77, no. 1, pp. 15–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Sinotte, C. Diorio, S. Bérubé, M. Pollak, and J. Brisson, “Genetic polymorphisms of the vitamin D binding protein and plasma concentrations of 25-hydroxyvitamin D in premenopausal women,” American Journal of Clinical Nutrition, vol. 89, no. 2, pp. 634–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Pekkinen, E. Saarnio, H. T. Viljakainen, et al., “Vitamin D binding protein genotype is associated with serum 25-hydroxyvitamin D and PTH concentrations, as well as bone health in children and adolescents in Finland,” PLOS ONE, vol. 9, no. 1, Article ID e87292, 2014. View at Publisher · View at Google Scholar
  17. X.-H. Xu, D.-H. Xiong, X.-G. Liu et al., “Association analyses of vitamin D-binding protein gene with compression strength index variation in Caucasian nuclear families,” Osteoporosis International, vol. 21, no. 1, pp. 99–107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Rapado, F. Hawkins, L. Sobrinho et al., “Bone mineral density and androgen levels in elderly males,” Calcified Tissue International, vol. 65, no. 6, pp. 417–421, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. H. Al-Oanzi, S. P. Tuck, S. S. Mastana et al., “Vitamin D-binding protein gene microsatellite polymorphism influences BMD and risk of fractures in men,” Osteoporosis International, vol. 19, no. 7, pp. 951–960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. E. C. Taes, S. Goemaere, G. Huang et al., “Vitamin D binding protein, bone status and body composition in community-dwelling elderly men,” Bone, vol. 38, no. 5, pp. 701–707, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. D. D. Bikle, P. K. Siiteri, and E. Ryzen, “Serum protein binding of 1,25-dihydroxyvitamin D: a reevaluation by direct measurement of free metabolite levels,” Journal of Clinical Endocrinology and Metabolism, vol. 61, no. 5, pp. 969–975, 1985. View at Scopus
  22. F. F. Safadi, P. Thornton, H. Magiera et al., “Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein,” Journal of Clinical Investigation, vol. 103, no. 2, pp. 239–251, 1999. View at Scopus
  23. R. F. Chun, A. L. Lauridsen, L. Suon et al., “Vitamin D-binding protein directs monocyte responses to 25-hydroxy- and 1,25-dihydroxyvitamin D,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 7, pp. 3368–3376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. D. D. Bikle and E. Gee, “Free, and not total, 1,25-dihydroxyvitamin D regulates 25-hydroxyvitamin D metabolism by keratinocytes,” Endocrinology, vol. 124, no. 2, pp. 649–654, 1989. View at Scopus
  25. C. M. Mendel, “The free hormone hypothesis: a physiologically based mathematical model,” Endocrine Reviews, vol. 10, no. 3, pp. 232–274, 1989. View at Scopus
  26. D. D. Bikle, B. P. Halloran, and E. Gee, “Free 25-hydroxyvitamin D levels are normal in subjects with liver disease and reduced total 25-hydroxyvitamin D levels,” Journal of Clinical Investigation, vol. 78, no. 3, pp. 748–752, 1986. View at Scopus
  27. A. Vermeulen, L. Verdonck, and J. M. Kaufman, “A critical evaluation of simple methods for the estimation of free testosterone in serum,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 10, pp. 3666–3672, 1999. View at Scopus
  28. C. E. Powe, C. Ricciardi, A. H. Berg et al., “Vitamin D-binding protein modifies the vitamin D-bone mineral density relationship,” Journal of Bone and Mineral Research, vol. 26, no. 7, pp. 1609–1616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Bhan, C. E. Powe, A. H. Berg et al., “Bioavailable vitamin D is more tightly linked to mineral metabolism than total vitamin D in incident hemodialysis patients,” Kidney International, vol. 82, no. 1, pp. 84–89, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. B. W. Hollis and D. D. Bikle, “Vitamin D-binding protein and vitamin D in blacks and whites,” The New England Journal of Medicine, vol. 370, no. 9, pp. 879–880, 2014.
  31. R. Bouillon, K. Jones, and I. Schoenmakers, “Vitamin D-binding protein and vitamin D in blacks and whites,” The New England Journal of Medicine, vol. 370, no. 9, p. 879, 2014.
  32. C. E. Powe, S. A. Karumanchi, and R. Thadhani, “Vitamin D-binding protein and vitamin D in blacks and whites,” The New England Journal of Medicine, vol. 370, no. 9, pp. 880–881, 2014.
  33. J. B. Schwartz, J. Lai, B. Lizaola, et al., “A comparison of direct and calculated free 25(OH) vitamin D levels in clinical populations,” The Journal of Clinical Endocrinology and Metabolism, vol. 99, no. 5, pp. 1631–1637, 2014. View at Publisher · View at Google Scholar