About this Journal Submit a Manuscript Table of Contents
International Journal of Evolutionary Biology
Volume 2012 (2012), Article ID 396165, 12 pages
http://dx.doi.org/10.1155/2012/396165
Review Article

What Can Phages Tell Us about Host-Pathogen Coevolution?

1Biology Department, Queens College, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
2The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, USA

Received 7 September 2012; Accepted 13 October 2012

Academic Editor: Stephane Boissinot

Copyright © 2012 John J. Dennehy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Arditti, J. Elliott, I. J. Kitching, and L. T. Wasserthal, “Good heavens what insect can suck it'—Charles Darwin, Angraecum sesquipedale and Xanthopan morganii praedicta,” Botanical Journal of the Linnean Society, vol. 169, no. 3, pp. 403–432.
  2. C. Darwin, On the Various Contrivances by which British and Foreign Orchids Are Fertilised by Insects, John Murray, London, UK, 1862.
  3. G. Kritsky, “Darwin's Madagascan hawk moth prediction,” American Entomologist, vol. 37, no. 4, pp. 206–210, 1991.
  4. A. Pauw, J. Stofberg, and R. J. Waterman, “Flies and flowers in Darwin's race,” Evolution, vol. 63, no. 1, pp. 268–279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. E. J. Woolhouse, J. P. Webster, E. Domingo, B. Charlesworth, and B. R. Levin, “Biological and biomedical implications of the co-evolution of pathogens and their hosts,” Nature Genetics, vol. 32, no. 4, pp. 569–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. W. D. Hamilton, “Sex versus non-sex versus parasite,” Oikos, vol. 35, no. 2, pp. 282–290, 1980.
  7. W. D. Hamilton, R. Axelrod, and R. Tanese, “Sexual reproduction as an adaptation to resist parasites (A review),” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 9, pp. 3566–3573, 1990. View at Publisher · View at Google Scholar · View at Scopus
  8. J. J. Bull, “Virulence,” Evolution, vol. 48, no. 5, pp. 1423–1437, 1994. View at Scopus
  9. P. Laskaris, S. Tolba, L. Calvo-Bado, and L. Wellington, “Coevolution of antibiotic production and counter-resistance in soil bacteria,” Environmental Microbiology, vol. 12, no. 3, pp. 783–796, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Schmid-Hempel and D. Ebert, “On the evolutionary ecology of specific immune defence,” Trends in Ecology and Evolution, vol. 18, no. 1, pp. 27–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. D. J. Minchella, “Host life-history variation in response to parasitism,” Parasitology, vol. 90, no. 1, pp. 205–216, 1985. View at Scopus
  12. R. M. Anderson and R. M. May, “Coevolution of hosts and parasites,” Parasitology, vol. 85, no. 2, pp. 411–426, 1982. View at Scopus
  13. D. J. Penn and W. K. Potts, “The evolution of mating preferences and major histocompatibility complex genes,” American Naturalist, vol. 153, no. 2, pp. 145–164, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. S. A. Frank, “Recognition and polymorphism in host-parasite genetics,” Philosophical Transactions of the Royal Society of London B, vol. 346, no. 1317, pp. 283–293, 1994. View at Scopus
  15. M. S. Hafner and S. A. Nadler, “Phylogenetic trees support the coevolution of parasites and their hosts,” Nature, vol. 332, no. 6161, pp. 258–259, 1988. View at Scopus
  16. W. M. Switzer, M. Salemi, V. Shanmugam et al., “Ancient co-speciation of simian foamy viruses and primates,” Nature, vol. 434, no. 7031, pp. 376–380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. H. Lawton and D. R. Strong, “Community patterns and competition in folivorous insects,” American Naturalist, vol. 118, no. 3, pp. 317–338, 1981.
  18. J. Roughgarden, “Competition and theory in community ecology,” American Naturalist, vol. 122, no. 5, pp. 583–601, 1983. View at Publisher · View at Google Scholar · View at Scopus
  19. J. N. Thompson, The Coevolutionary Process, University of Chicago Press, Chicago, Ill, USA, 1994.
  20. H. H. Flor, “Host-parasite interaction in flax rust—its genetic and other implications,” Phytopathology, vol. 45, no. 12, pp. 680–685, 1955.
  21. C. J. Mode, “A mathematical-model for the co-evolution of obligate parasites and their hosts,” Evolution, vol. 12, no. 2, pp. 158–165, 1958.
  22. C. Person, “Gene-for-gene relationships in host: parasite systems,” Canadian Journal of Botany, vol. 37, no. 5, pp. 1101–1130, 1959.
  23. P. R. Ehrlich and P. H. Raven, “Butterflies and plants—a study in coevolution,” Evolution, vol. 18, no. 4, pp. 586–608, 1964.
  24. D. H. Janzen, “Coevolution of mutualism between ants and acacias in Central America,” Evolution, vol. 20, no. 3, p. 249, 1966.
  25. J. Cowlishaw and M. Mrsa, “Co evolution of a virus alga system,” Journal of Applied Microbiology, vol. 29, no. 2, pp. 234–239, 1975. View at Scopus
  26. R. E. Cannon, M. S. Shane, and J. M. Whitaker, “Interaction of Plectonema boryanum (Cyanophyceae) and LPP cyanophages in continuous culture,” Journal of Phycology, vol. 12, no. 4, pp. 418–421, 1976.
  27. B. R. Levin, F. M. Stewart, and L. Chao, “Resource limited growth, competition, and predation—a model and experimental studies with bacteria and bacteriophage,” American Naturalist, vol. 111, no. 977, pp. 3–24, 1977.
  28. L. Chao, B. R. Levin, and F. M. Stewart, “Complex community in a simple habitat—experimental studies with bacteria and phage,” Ecology, vol. 58, no. 2, pp. 369–378, 1977.
  29. Y. M. Barnet, M. J. Daft, and W. D. P. Stewart, “Cyanobacteria—cyanophage interactions in continuous culture,” Journal of Applied Bacteriology, vol. 51, no. 3, pp. 541–552, 1981. View at Scopus
  30. R. E. Lenski and B. R. Levin, “Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities,” American Naturalist, vol. 125, no. 4, pp. 585–602, 1985. View at Scopus
  31. E. Spanakis and M. T. Horne, “Co-adaptation of Escherichia coli and coliphage γvir in continuous culture,” Journal of General Microbiology, vol. 133, no. 2, pp. 353–360, 1987. View at Scopus
  32. R. E. Lenski and, “Dynamics of interactions between bacteria and virulent bacteriophage,” Advances in Microbial Ecology, vol. 10, pp. 1–44, 1988.
  33. M. T. Horne, “Coevolution of Escherichia coli and bacteriophages in chemostat culture,” Science, vol. 168, no. 3934, pp. 992–993, 1970. View at Scopus
  34. C. M. Jessup, S. E. Forde, and B. J. M. Bohannan, “Microbial experimental systems in ecology,” Advances in Ecological Research, vol. 37, pp. 273–307, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. J. J. Dennehy, “Bacteriophages as model organisms for virus emergence research,” Trends in Microbiology, vol. 17, no. 10, pp. 450–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Horvath and R. Barrangou, “CRISPR/Cas, the immune system of Bacteria and Archaea,” Science, vol. 327, no. 5962, pp. 167–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Stern and R. Sorek, “The phage-host arms race: shaping the evolution of microbes,” BioEssays, vol. 33, no. 1, pp. 43–51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. D. H. Barouch, J. Kunstman, M. J. Kuroda et al., “Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lynphocytes,” Nature, vol. 415, no. 6869, pp. 335–339, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. D. H. O'Connor, T. M. Allen, T. U. Vogel et al., “Acute phase cytotoxic T lymphocyte escape is a hallmark of simian immunodeficiency virus infection,” Nature Medicine, vol. 8, no. 5, pp. 493–499, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Janz, “Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies,” Annual Review of Ecology, Evolution, and Systematics, vol. 42, pp. 79–89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J. N. Thompson, “Concepts of coevolution,” Trends in Ecology and Evolution, vol. 4, no. 6, pp. 179–183, 1989. View at Scopus
  42. A. Agrawal and C. M. Lively, “Infection genetics: gene-for-gene versus matching-alleles models and all points in between,” Evolutionary Ecology Research, vol. 4, no. 1, pp. 79–90, 2002. View at Scopus
  43. A. Kerr, “The impact of molecular genetics on plant pathology,” Annual Review of Phytopathology, vol. 25, pp. 87–110, 1987.
  44. M. A. Parker, “Pathogens and sex in plants,” Evolutionary Ecology, vol. 8, no. 5, pp. 560–584, 1994. View at Scopus
  45. A. Fenton, J. Antonovics, and M. A. Brockhurst, “Two-step infection processes can lead to coevolution between functionally independent infection and resistance pathways,” Evolution, vol. 66, no. 7, pp. 2030–2041, 2002.
  46. A. D. Morgan, S. Gandon, and A. Buckling, “The effect of migration on local adaptation in a coevolving host-parasite system,” Nature, vol. 437, no. 7056, pp. 253–256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. A. D. Morgan, M. A. Brockhurst, L. D. C. Lopez-Pascua, C. Pal, and A. Buckling, “Differential impact of simultaneous migration on coevolving hosts and parasites,” BMC Evolutionary Biology, vol. 7, article 1, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. M. E. Hochberg and M. Van Baalen, “Antagonistic coevolution over productivity gradients,” American Naturalist, vol. 152, no. 4, pp. 620–634, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. C. M. Lively, “Migration, virulence, and the geographic mosaic of adaptation by parasites,” American Naturalist, vol. 153, pp. S34–S47, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. J. K. M. Brown and A. Tellier, “Plant-parasite coevolution: bridging the gap between genetics and ecology,” Annual Review of Phytopathology, vol. 49, pp. 345–367, 2011.
  51. S. A. Frank, “Statistical properties of polymorphism in host-parasite genetics,” Evolutionary Ecology, vol. 10, no. 3, pp. 307–317, 1996. View at Scopus
  52. M. A. Brockhurst, A. D. Morgan, P. B. Rainey, and A. Buckling, “Population mixing accelerates coevolution,” Ecology Letters, vol. 6, no. 11, pp. 975–979, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Buckling and P. B. Rainey, “The role of parasites in sympatric and allopatric host diversification,” Nature, vol. 420, no. 6915, pp. 496–499, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. A. D. Morgan and A. Buckling, “Relative number of generations of hosts and parasites does not influence parasite local adaptation in coevolving populations of bacteria and phages,” Journal of Evolutionary Biology, vol. 19, no. 6, pp. 1956–1963, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. L. D. C. Lopez-Pascua, M. A. Brockhurst, and A. Buckling, “Antagonistic coevolution across productivity gradients: an experimental test of the effects of dispersal,” Journal of Evolutionary Biology, vol. 23, no. 1, pp. 207–211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. P. D. Scanlan, A. R. Hall, L. D. C. Lopez-Pascua, and A. Buckling, “Genetic basis of infectivity evolution in a bacteriophage,” Molecular Ecology, vol. 20, no. 5, pp. 981–989, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. V. Poullain, S. Gandon, M. A. Brockhurst, A. Buckling, and M. E. Hochberg, “The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage,” Evolution, vol. 62, no. 1, pp. 1–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. C. O. Flores, J. R. Meyer, S. Valverde, L. Farr, and J. S. Weitz, “Statistical structure of host-phage interactions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 28, pp. E288–E297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Vogwill, A. Fenton, and M. A. Brockhurst, “How does spatial dispersal network affect the evolution of parasite local adaptation?” Evolution, vol. 64, no. 6, pp. 1795–1801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Buckling and P. B. Rainey, “Antagonistic coevolution between a bacterium and a bacteriophage,” Proceedings of the Royal Society B, vol. 269, no. 1494, pp. 931–936, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Sasaki, “Host-parasite coevolution in a multilocus gene-for-gene system,” Proceedings of the Royal Society B, vol. 267, no. 1458, pp. 2183–2188, 2000. View at Scopus
  62. S. A. Frank, “Specificity versus detectable polymorphism in host-parasite genetics,” Proceedings of the Royal Society B, vol. 254, no. 1341, pp. 191–197, 1993. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Wei, A. Kirby, and B. R. Levin, “The population and evolutionary dynamics of Vibrio cholerae and its bacteriophage: conditions for maintaining phage-limited communities,” American Naturalist, vol. 178, no. 6, pp. 715–728, 2011.
  64. Y. Wei, P. Ocampo, and B. R. Levin, “An experimental study of the population and evolutionary dynamics of Vibrio cholerae O1 and the bacteriophage JSF4,” Proceedings of the Royal Society B, vol. 277, no. 1698, pp. 3247–3254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. B. J. M. Bohannan and R. E. Lenski, “Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage,” Ecology Letters, vol. 3, no. 4, pp. 362–377, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Mizoguchi, M. Morita, C. R. Fischer, M. Yoichi, Y. Tanji, and H. Unno, “Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture,” Applied and Environmental Microbiology, vol. 69, no. 1, pp. 170–176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. B. J. M. Bohannan and R. E. Lenski, “Effect of resource enrichment on a chemostat community of bacteria and bacteriophage,” Ecology, vol. 78, no. 8, pp. 2303–2315, 1997. View at Scopus
  68. S. J. Schrag and J. E. Mittler, “Host-parasite coexistence: the role of spatial refuges in stabilizing bacteria-phage interactions,” American Naturalist, vol. 148, no. 2, pp. 348–377, 1996. View at Publisher · View at Google Scholar · View at Scopus
  69. M. J. B. Paynter and H. R. Bungay, “Dynamics of coliphage infections,” in Fermentation Advances, D. Perlman, Ed., pp. 323–336, Academic Press, New York, NY, USA, 1969.
  70. K. A. Lythgoe and L. Chao, “Mechanisms of coexistence of a bacteria and a bacteriophage in a spatially homogeneous environment,” Ecology Letters, vol. 6, no. 4, pp. 326–334, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Kashiwagi and T. Yomo, “Ongoing phenotypic and genomic changes in experimental coevolution of RNA bacteriophage Q beta and Escherichia coli,” PLoS Genetics, vol. 7, article 8, 2011.
  72. M. F. Marston, J. Pierciey, A. Shepard, et al., “Rapid diversification of coevolving marine Synechococcus and a virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 12, pp. 4544–4549, 2012.
  73. B. A. McDonald and C. Linde, “Pathogen population genetics, evolutionary potential, and durable resistance,” Annual Review of Phytopathology, vol. 40, pp. 349–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. T. D. Cuypers and P. Hogeweg, “Virtual genomes in flux: an interplay of neutrality and adaptability explains genome expansion and streamlining,” Genome Biology and Evolution, vol. 4, no. 3, pp. 212–229, 2012.
  75. A. R. Hall, “Multiplicity of infection does not accelerate infectivity evolution of viral parasites in laboratory microcosms,” Journal of Evolutionary Biology, vol. 25, no. 2, pp. 409–415, 2011.
  76. S. Paterson, T. Vogwill, A. Buckling et al., “Antagonistic coevolution accelerates molecular evolution,” Nature, vol. 464, no. 7286, pp. 275–278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. A. R. Hall, P. D. Scanlan, and A. Buckling, “Bacteria-phage coevolution and the emergence of generalist pathogens,” American Naturalist, vol. 177, no. 1, pp. 44–53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. A. R. Hall, P. D. Scanlan, A. D. Morgan, and A. Buckling, “Host-parasite coevolutionary arms races give way to fluctuating selection,” Ecology Letters, vol. 14, no. 7, pp. 635–642, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Gómez and A. Buckling, “Bacteria-phage antagonistic coevolution in soil,” Science, vol. 332, no. 6025, pp. 106–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. J. J. Bull and I. N. Wang, “Optimality models in the age of experimental evolution and genomics,” Journal of Evolutionary Biology, vol. 23, no. 9, pp. 1820–1838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. G. A. Parker and J. M. Smith, “Optimality theory in evolutionary biology,” Nature, vol. 348, no. 6296, pp. 27–33, 1990. View at Publisher · View at Google Scholar · View at Scopus
  82. G. A. Parker, “Selfish genes, evolutionary games, and the adaptiveness of behaviour,” Nature, vol. 274, no. 5674, pp. 849–855, 1978. View at Publisher · View at Google Scholar · View at Scopus
  83. M. A. Brockhurst, P. B. Rainey, and A. Buckling, “The effect of spatial heterogeneity and parasites on the evolution of host diversity,” Proceedings of the Royal Society B, vol. 271, no. 1534, pp. 107–111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Buckling, Y. Wei, R. C. Massey, M. A. Brockhurst, and M. E. Hochberg, “Antagonistic coevolution with parasites increases the cost of host deleterious mutations,” Proceedings of The Royal Society B, vol. 273, no. 1582, pp. 45–49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. S. E. Forde, J. N. Thompson, R. D. Holt, and B. J. M. Bohannan, “Coevolution drives temporal changes in fitness and diversity across environments in a bacteria-bacteriophage interaction,” Evolution, vol. 62, no. 8, pp. 1830–1839, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. L. D. C. Lopez and A. Buckling, “Increasing productivity accelerates host-parasite coevolution,” Journal of Evolutionary Biology, vol. 21, no. 3, pp. 853–860, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Middelboe, K. Holmfeldt, L. Riemann, O. Nybroe, and J. Haaber, “Bacteriophages drive strain diversification in a marine Flavobacterium: implications for phage resistance and physiological properties,” Environmental Microbiology, vol. 11, no. 8, pp. 1971–1982, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. A. D. Morgan, R. Craig MacLean, and A. Buckling, “Effects of antagonistic coevolution on parasite-mediated host coexistence,” Journal of Evolutionary Biology, vol. 22, no. 2, pp. 287–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. M. A. Brockhurst, A. Buckling, and P. B. Rainey, “The effect of a bacteriophage on diversification of the opportunistic bacterial pathogen, Pseudomonas aeruginosa,” Proceedings of the Royal Society B, vol. 272, no. 1570, pp. 1385–1391, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Hofnung, A. Jezierska, and C. Braun Breton, “Lam B mutations in E. coli K12: growth of λ host range mutants and effect of nonsense suppressors,” Molecular and General Genetics, vol. 145, no. 2, pp. 207–213, 1976. View at Scopus
  91. M. Romantschuk and D. H. Bamford, “Function of Pili in bacteriophage phi6 penetration,” Journal of General Virology, vol. 66, no. 11, pp. 2461–2469, 1985. View at Scopus
  92. M. Romantschuk, E. L. Nurmiaho-Lassila, E. Roine, and A. Suoniemi, “Pilus-mediated adsorption of Pseudomonas syringae to the surface of host and non-host plant leaves,” Journal of General Microbiology, vol. 139, no. 9, pp. 2251–2260, 1993. View at Scopus
  93. S. J. Agosta, N. Janz, and D. R. Brooks, “How specialists can be generalists: resolving the and “parasite paradox” and implications for emerging infectious disease,” Zoologia, vol. 27, no. 2, pp. 151–162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. K. P. Johnson, J. R. Malenke, and D. H. Clayton, “Competition promotes the evolution of host generalists in obligate parasites,” Proceedings of the Royal Society B, vol. 276, no. 1675, pp. 3921–3926, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. T. J. Kawecki, “Red queen meets Santa Rosalia: arms races and the evolution of host specialization in organisms with parasitic lifestyles,” American Naturalist, vol. 152, no. 4, pp. 635–651, 1998. View at Publisher · View at Google Scholar · View at Scopus
  96. J. D. Fry, “The evolution of host specialization: are trade-offs overrated?” American Naturalist, vol. 148, pp. S84–S107, 1996. View at Publisher · View at Google Scholar · View at Scopus
  97. P. Nosil, “Transition rates between specialization and generalization in phytophagous insects,” Evolution, vol. 56, no. 8, pp. 1701–1706, 2002. View at Scopus
  98. P. Hyman and S. T. Abedon, “Bacteriophage host range and bacterial resistance,” Advances in Applied Microbiology, vol. 70, pp. 217–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. P. Agudelo-Romero, F. de la Iglesia, and S. F. Elena, “The pleiotropic cost of host-specialization in Tobacco etch potyvirus,” Infection, Genetics and Evolution, vol. 8, no. 6, pp. 806–814, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. W. D. Crill, H. A. Wichman, and J. J. Bull, “Evolutionary reversals during viral adaptation to alternating hosts,” Genetics, vol. 154, no. 1, pp. 27–37, 2000. View at Scopus
  101. P. E. Turner and S. F. Elena, “Cost of host radiation in an RNA virus,” Genetics, vol. 156, no. 4, pp. 1465–1470, 2000. View at Scopus
  102. R. Benmayor, D. J. Hodgson, G. G. Perron, and A. Buckling, “Host mixing and disease emergence,” Current Biology, vol. 19, no. 9, pp. 764–767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Lopez-Pascua, S. Gandon, and A. Buckling, “Abiotic heterogeneity drives parasite local adaptation in coevolving bacteria and phages,” Journal of Evolutionary Biology, vol. 25, no. 1, pp. 187–195, 2011.
  104. S. E. Forde, J. N. Thompson, and B. J. M. Bohannan, “Gene flow reverses an adaptive cline in a coevolving host-parasitoid interaction,” American Naturalist, vol. 169, no. 6, pp. 794–801, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. B. W. Alto and P. E. Turner, “Consequences of host adaptation for performance of vesicular stomatitis virus in novel thermal environments,” Evolutionary Ecology, vol. 24, no. 2, pp. 299–315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. J. J. Dennehy, N. A. Friedenberg, R. D. Holt, and P. E. Turner, “Viral ecology and the maintenance of novel host use,” American Naturalist, vol. 167, no. 3, pp. 429–439, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. J. J. Dennehy and P. E. Turner, “Reduced fecundity is the cost of cheating in RNA virus phi6,” Proceedings of the Royal Society B, vol. 271, no. 1554, pp. 2275–2282, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. W. Chen and R. S. Baric, “Molecular anatomy of mouse hepatitis virus persistence: coevolution of increased host cell resistance and virus virulence,” Journal of Virology, vol. 70, no. 6, pp. 3947–3960, 1996. View at Scopus
  109. P. J. Kerr, “Myxomatosis in Australia and Europe: a model for emerging infectious diseases,” Antiviral Research, vol. 93, no. 3, pp. 387–415, 2012.
  110. M. E. Hochberg, “Establishing genetic correlations involving parasite virulence,” Evolution, vol. 52, no. 6, pp. 1865–1868, 1998. View at Scopus
  111. R. R. Regoes, M. A. Nowak, and S. Bonhoeffer, “Evolution of virulence in a heterogeneous host population,” Evolution, vol. 54, no. 1, pp. 64–71, 2000. View at Scopus
  112. S. Duffy, P. E. Turner, and C. L. Burch, “Pleiotropic costs of niche expansion in the RNA bacteriophage Φ6,” Genetics, vol. 172, no. 2, pp. 751–757, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. P. D. Scanlan and A. Buckling, “Co-evolution with lytic phage selects for the mucoid phenotype of Pseudomonas fluorescens SBW25,” ISME Journal, vol. 6, no. 6, pp. 1148–1158, 2012.
  114. J. A. G. M. De Visser and R. E. Lenski, “Long-term experimental evolution in Escherichia coliXI. Rejection of non-transitive interactions as cause of declining rate of adaptation,” BMC Evolutionary Biology, vol. 2, article 19, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. Q. G. Zhang and A. Buckling, “Antagonistic coevolution limits population persistence of a virus in a thermally deteriorating environment,” Ecology Letters, vol. 14, no. 3, pp. 282–288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. J. N. Thompson, “The coevolving web of life,” American Naturalist, vol. 173, no. 2, pp. 125–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. C. Darwin, On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, John Murray, London, UK, 1859.
  118. L. Chao, B. R. Levin, and F. M. Stewart, “Complex community in a simple habitat—experimental study with bacteria and phage,” Ecology, vol. 58, no. 2, pp. 369–378, 1977.
  119. J. N. Thompson, “Specific hypotheses on the geographic mosaic of coevolution,” American Naturalist, vol. 153, pp. S1–S14, 1999. View at Publisher · View at Google Scholar · View at Scopus
  120. P. B. Rainey and M. Travisano, “Adaptive radiation in a heterogeneous environment,” Nature, vol. 394, no. 6688, pp. 69–72, 1998. View at Publisher · View at Google Scholar · View at Scopus
  121. C. Pal, M. D. Maciá, A. Oliver, I. Schachar, and A. Buckling, “Coevolution with viruses drives the evolution of bacterial mutation rates,” Nature, vol. 450, no. 7172, pp. 1079–1081, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Buckling and D. J. Hodgson, “Short-term rates of parasite evolution predict the evolution of host diversity,” Journal of Evolutionary Biology, vol. 20, no. 5, pp. 1682–1688, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. S. E. Forde, R. E. Beardmore, I. Gudelj, S. S. Arkin, J. N. Thompson, and L. D. Hurst, “Understanding the limits to generalizability of experimental evolutionary models,” Nature, vol. 455, no. 7210, pp. 220–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. M. A. Brockhurst, A. Buckling, and P. B. Rainey, “Spatial heterogeneity and the stability of host-parasite coexistence,” Journal of Evolutionary Biology, vol. 19, no. 2, pp. 374–379, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. B. J. M. Bohannan and R. E. Lenski, “Effect of prey heterogeneity on the response of a model food chain to resource enrichment,” American Naturalist, vol. 153, no. 1, pp. 73–82, 1999. View at Publisher · View at Google Scholar · View at Scopus
  126. S. E. Forde, J. N. Thompson, and B. J. M. Bohannan, “Adaptation varies through space and time in a coevolving host-parasitoid interaction,” Nature, vol. 431, no. 7010, pp. 841–844, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. T. Vogwill, A. Fenton, and M. A. Brockhurst, “Dispersal and natural enemies interact to drive spatial synchrony and decrease stability in patchy populations,” Ecology Letters, vol. 12, no. 11, pp. 1194–1200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. T. Vogwill, A. Fenton, A. Buckling, M. E. Hochberg, and M. A. Brockhurst, “Source populations act as coevolutionary pacemakers in experimental selection mosaics containing hotspots and coldspots,” American Naturalist, vol. 173, no. 5, pp. E171–E176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. A. D. Morgan, M. B. Bonsall, and A. Buckling, “Impact of bacterial mutation rate on coevolutionary dynamics between bacteria and phages,” Evolution, vol. 64, no. 10, pp. 2980–2987, 2010. View at Publisher · View at Google Scholar · View at Scopus