About this Journal Submit a Manuscript Table of Contents
International Journal of Evolutionary Biology
Volume 2014 (2014), Article ID 675432, 10 pages
http://dx.doi.org/10.1155/2014/675432
Review Article

A Mechanistic Explanation Linking Adaptive Mutation, Niche Change, and Fitness Advantage for the Wrinkly Spreader

The SIMBIOS Centre & School of Science, Engineering and Technology, Abertay University, Bell Street, Dundee DD1 1HG, UK

Received 25 June 2013; Accepted 8 November 2013; Published 16 January 2014

Academic Editor: Ben-Yang Liao

Copyright © 2014 Andrew J. Spiers. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Schluter, The Ecology of Adaptive Radiation, Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, UK, 1st edition, 2000.
  2. D. Lack, Darwin’s Finches, Cambridge University Press, Cambridge, UK, 1947.
  3. G. Fryer and T. D. Iles, The Cichlid Fishes of the Great Lakes of Africa, Oliver and Boyd, Edinburgh, UK, 1972.
  4. M. Hau and M. Wikelski, “Darwin's Finches,” in ELS, John Wiley & Sons, Chichester, UK, 2001. View at Publisher · View at Google Scholar
  5. B. R. Levin and C. T. Bergstrom, “Bacteria are different: observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 6981–6985, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. J. B. Yoder, E. Clancey, S. Des Roches et al., “Ecological opportunity and the origin of adaptive radiations,” Journal of Evolutionary Biology, vol. 23, no. 8, pp. 1581–1596, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. J. Whitaker, “Allopatric origins of microbial species,” Philosophical Transactions of the Royal Society B, vol. 361, no. 1475, pp. 1975–1984, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. T. J. Treangen and E. P. C. Rocha, “Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes,” PLoS Genetics, vol. 7, no. 1, Article ID article e1001284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. P. B. Rainey, A. Buckling, R. Kassen, and M. Travisano, “The emergence and maintenance of diversity: insights from experimental bacterial populations,” Trends in Ecology and Evolution, vol. 15, no. 6, pp. 243–247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Adams, “Microbial evolution in laboratory environments,” Research in Microbiology, vol. 155, no. 5, pp. 311–318, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. R. C. MacLean, “Adaptive radiation in microbial microcosms,” Journal of Evolutionary Biology, vol. 18, no. 6, pp. 1376–1386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Buckling, R. C. MacLean, M. A. Brockhurst, and N. Colegrave, “The beagle in a bottle,” Nature, vol. 457, no. 7231, pp. 824–829, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. J. Spiers, “Bacterial evolution in simple microcosms,” in Microcosms: Ecology, Biological Implications and Environmental Impact, C. H. Harris, Ed., Microbiology Research Advances Series, Nova Publishers, Hauppauge, NY, USA, 2013.
  14. J. N. Thompson, Relentless Evolution, The University of Chicago Press, Chicago, Ill, USA, 2013.
  15. R. E. Lenski, M. R. Rose, S. C. Simpson, and S. C. Tadler, “Long-term experimental evolution in Escherichia coli. I. adaptation and divergence during 2000 generations,” The American Naturalist, vol. 138, no. 6, pp. 1315–1341, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. H. A. Orr, “Fitness and its role in evolutionary genetics,” Nature Reviews Genetics, vol. 10, no. 8, pp. 531–539, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L.-M. Chevin, “On measuring selection in experimental evolution,” Biology Letters, vol. 7, no. 2, pp. 210–213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. C. Dalziel, S. M. Rogers, and P. M. Schulte, “Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology,” Molecular Ecology, vol. 18, no. 24, pp. 4997–5017, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. P. B. Rainey and M. Travisano, “Adaptive radiation in a heterogeneous environment,” Nature, vol. 394, no. 6688, pp. 69–72, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Hengge, “Principles of c-di-GMP signalling in bacteria,” Nature Reviews Microbiology, vol. 7, no. 4, pp. 263–273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. T. L. Povolotsky and R. Hengge, “‘Life-style ’ control networks in Escherichia coli: signaling by the second messenger c-di-GMP,” Journal of Biotechnology, vol. 160, no. 1-2, pp. 10–16, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Srivastava and C. M. Waters, “A tangled web: regulatory connections between quorum sensing and cyclic di-GMP,” Journal of Bacteriology, vol. 194, no. 17, pp. 4485–4493, 2012. View at Publisher · View at Google Scholar
  23. H. Sondermann, N. J. Shikuma, and F. H. Yildiz, “You've come a long way: c-di-GMP signaling,” Current Opinion in Microbiology, vol. 15, no. 2, pp. 140–146, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. U. Römling, M. Y. Galperin, and M. Gomelsky, “Cyclic di-GMP: the first 25 years of a universal bacterial second messenger,” Microbiology and Molecular Biology Reviews, vol. 77, no. 1, pp. 1–52, 2013. View at Publisher · View at Google Scholar
  25. L. Wang, F. F. Wang, and W. Qian, “Evolutionary rewiring and reprogramming of bacterial transcription regulation,” Journal of Genetics and Genomics, vol. 38, no. 7, pp. 279–288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. P. B. Rainey and M. J. Bailey, “Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome,” Molecular Microbiology, vol. 19, no. 3, pp. 521–533, 1996. View at Scopus
  27. G. M. Preston, N. Bertrand, and P. B. Rainey, “Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25,” Molecular Microbiology, vol. 41, no. 5, pp. 999–1014, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. I. de Bruijn, M. J. D. de Kock, M. Yang, P. de Waard, T. A. Van Beek, and J. M. Raaijmakers, “Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species,” Molecular Microbiology, vol. 63, no. 2, pp. 417–428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. J. Spiers, A. Buckling, and P. B. Rainey, “The causes of Pseudomonas diversity,” Microbiology, vol. 146, no. 10, pp. 2345–2350, 2000. View at Scopus
  30. M. W. Silby, A. M. Cerdeño-Tárraga, G. S. Vernikos et al., “Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens,” Genome Biology, vol. 10, no. 5, article R51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. W. Silby, C. Winstanley, S. A. C. Godfrey, S. B. Levy, and R. W. Jackson, “Pseudomonas genomes: diverse and adaptable,” FEMS Microbiology Reviews, vol. 35, no. 4, pp. 652–680, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. A. J. Spiers, D. Field, M. Bailey, and P. B. Rainey, “Notes on designing a partial genomic database: the PfSBW25 encyclopaedia, a sequence database for Pseudomonas fluorescens SBW25,” Microbiology, vol. 147, no. 2, pp. 247–249, 2001. View at Scopus
  33. M. Gal, G. M. Preston, R. C. Massey, A. J. Spiers, and P. B. Rainey, “Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces,” Molecular Ecology, vol. 12, no. 11, pp. 3109–3121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. S. R. Giddens, R. W. Jackson, C. D. Moon et al., “Mutational activation of niche-specific genes provides insight into regulatory networks and bacterial function in a complex environment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 46, pp. 18247–18252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. A. J. Spiers, S. G. Kahn, J. Bohannon, M. Travisano, and P. B. Rainey, “Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness,” Genetics, vol. 161, no. 1, pp. 33–46, 2002. View at Scopus
  36. S. Ude, D. L. Arnold, C. D. Moon, T. Timms-Wilson, and A. J. Spiers, “Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates,” Environmental Microbiology, vol. 8, no. 11, pp. 1997–2011, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Koza, P. D. Hallett, C. D. Moon, and A. J. Spiers, “Characterization of a novel air-liquid interface biofilm of Pseudomonas fluorescens SBW25,” Microbiology, vol. 155, no. 5, pp. 1397–1406, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Robertson, S. M. Hapca, O. Moshynets, and A. J. Spiers, “Air-liquid interface biofilm formation by psychrotrophic pseudomonads recovered from spoilt meat,” Antonie Van Leeuwenhoek, vol. 103, no. 1, pp. 251–259, 2013. View at Publisher · View at Google Scholar
  39. A. J. Spiers, Y. Y. Deeni, A. O. Folorunso, A. Koza, O. Moshynets, and K. Zawadzki, “Cellulose expression in Pseudomonas fluorescens SBW25 and other environmental pseudomonads,” in Cellulose, T. G. M. Van De Ven and L. Godbout, Eds., InTech, Rijeka, Croatia, 2013. View at Publisher · View at Google Scholar
  40. E. O. King, M. K. Ward, and D. E. Raney, “Two simple media for the demonstration of pyocyanin and fluorescin,” The Journal of Laboratory and Clinical Medicine, vol. 44, no. 2, pp. 301–307, 1954. View at Scopus
  41. R. Kassen, A. Buckling, G. Bell, and P. B. Ralney, “Diversity peaks at intermediate productivity in a laboratory microcosm,” Nature, vol. 406, no. 6795, pp. 508–512, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Buckling, M. A. Wills, and N. Colegrave, “Adaptation limits diversification of experimental bacterial populations,” Science, vol. 302, no. 5653, pp. 2107–2109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Van Valen, “A new evolutionary law,” Evolutionary Theory, vol. 1, pp. 1–30, 1973.
  44. L. H. Liow, L. Van Valen, and N. C. Stenseth, “Red queen: from populations to taxa and communities,” Trends in Ecology and Evolution, vol. 26, no. 7, pp. 349–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. M. A. Brockhurst, M. E. Hochberg, T. Bell, and A. Buckling, “Character displacement promotes cooperation in bacterial biofilms,” Current Biology, vol. 16, no. 20, pp. 2030–2034, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Bantinaki, R. Kassen, C. G. Knight, Z. Robinson, A. J. Spiers, and P. B. Rainey, “Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity,” Genetics, vol. 176, no. 1, pp. 441–453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. D. J. P. Engelmoer and D. E. Rozen, “Fitness trade-offs modify community composition under contrasting disturbance regimes in pseudomonas fluorescens microcosms,” Evolution, vol. 63, no. 11, pp. 3031–3037, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. J. R. Meyer, S. E. Schoustra, J. Lachapelle, and R. Kassen, “Overshooting dynamics in a model adaptive radiation,” Proceedings of the Royal Society B, vol. 278, no. 1704, pp. 392–398, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. J. H. Green, A. Koza, O. Moshynets, R. Pajor, M. R. Ritchie, and A. J. Spiers, “Evolution in a test tube: rise of the wrinkly spreaders,” Journal of Biological Education, vol. 45, no. 1, pp. 54–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Koza, O. Moshynets, W. Otten, and A. J. Spiers, “Environmental modification and niche construction: developing O2 gradients drive the evolution of the wrinkly spreader,” International Society of Microbial Ecology Journal, vol. 5, no. 4, pp. 665–673, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. A. J. Spiers, J. Bohannon, S. M. Gehrig, and P. B. Rainey, “Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose,” Molecular Microbiology, vol. 50, no. 1, pp. 15–27, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. S. S. Branda, Å. Vik, L. Friedman, and R. Kolter, “Biofilms: the matrix revisited,” Trends in Microbiology, vol. 13, no. 1, pp. 20–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. W. E. Huang, S. Ude, and A. J. Spiers, “Pseudomonas fluorescens SBW25 biofilm and planktonic cells have differentiable Raman spectral profiles,” Microbial Ecology, vol. 53, no. 3, pp. 471–474, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. A. J. Spiers and P. B. Rainey, “The Pdeudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity,” Microbiology, vol. 151, no. 9, pp. 2829–2839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Pelletier, D. Garant, and A. P. Hendry, “Eco-evolutionary dynamics,” Philosophical Transactions of the Royal Society B, vol. 364, no. 1523, pp. 1483–1489, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. D. M. Post and E. P. Palkovacs, “Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play,” Philosophical Transactions of the Royal Society B, vol. 364, no. 1523, pp. 1629–1640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. O. V. Moshynets, A. Koza, P. Dello Sterpaio, V. A. Kordium, and A. J. Spiers, “Up-dating the Cholodny method using PET films to sample microbial communities in soil,” Biopolymers and Cell, vol. 27, no. 3, pp. 199–205, 2011. View at Scopus
  58. S. A. West, A. S. Griffin, A. Gardner, and S. P. Diggle, “Social evolution theory for microorganisms,” Nature Reviews Microbiology, vol. 4, no. 8, pp. 597–607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. Q. G. Zhang, A. Buckling, R. J. Ellis, and H. C. J. Godfray, “Coevolution between cooperators and cheats in a microbial system,” Evolution, vol. 63, no. 9, pp. 2248–2256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. J. B. Xavier and K. R. Foster, “Cooperation and conflict in microbial biofilms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 876–881, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. F. Baquero and M. Lemonnier, “Generational coexistence and ancestor's inhibition in bacterial populations,” FEMS Microbiology Reviews, vol. 33, no. 5, pp. 958–967, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. A. J. Spiers, “Wrinkly-spreader fitness in the two-dimensional agar plate microcosm: maladaptation, compensation and ecological success,” PLoS One, vol. 2, no. 1, article e740, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Goymer, S. G. Kahn, J. G. Malone, S. M. Gehrig, A. J. Spiers, and P. B. Rainey, “Adaptive divergence in experimental populations of Pseudomonas fluorescens. II. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype,” Genetics, vol. 173, no. 2, pp. 515–526, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. J. G. Malone, R. Williams, M. Christen, U. Jenal, A. J. Spiers, and P. B. Rainey, “The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain,” Microbiology, vol. 153, no. 4, pp. 980–994, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Bren and M. Eisenbach, “How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation,” Journal of Bacteriology, vol. 182, no. 24, pp. 6865–6873, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. J. W. Hickman, D. F. Tifrea, and C. S. Harwood, “A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 40, pp. 14422–14427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. Z. T. Güvener and C. S. Harwood, “Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces,” Molecular Microbiology, vol. 66, no. 6, pp. 1459–1473, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. G. L. Winsor, D. K. W. Lam, L. Fleming et al., “Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes,” Nucleic Acids Research, vol. 39, no. 1, pp. D596–D600, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. M. J. McDonald, S. M. Gehrig, P. L. Meintjes, X. X. Zhang, and P. B. Rainey, “Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation,” Genetics, vol. 183, no. 3, pp. 1041–1053, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. S. M. Gehrig, Adaptation of Pseudomonas fluorescens SBW25 to the air-liquid interface: a study in evolutionary genetics [Ph.D. thesis], University of Oxford, Oxford, UK, 2005.
  71. M. J. McDonald, T. F. Cooper, H. J. E. Beaumont, and P. B. Rainey, “The distribution of fitness effects of new beneficial mutations in Pseudomonas fluorescens,” Biology Letters, vol. 7, no. 1, pp. 98–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. P. D. Newell, S. Yoshioka, K. L. Hvorecny, R. D. Monds, and G. A. O'Toole, “Systematic analysis of diguanylate cyclases that promote biofilm formation by Pseudomonas fluorescens Pf0-1,” Journal of Bacteriology, vol. 193, no. 18, pp. 4685–4698, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. I. M. Saxena, K. Kudlicka, K. Okuda, and R. M. Brown Jr., “Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization,” Journal of Bacteriology, vol. 176, no. 18, pp. 5735–5752, 1994. View at Scopus
  74. F. R. Blattner, G. Plunkett III, C. A. Bloch et al., “The complete genome sequence of Escherichia coli K-12,” Science, vol. 277, no. 5331, pp. 1453–1462, 1997. View at Publisher · View at Google Scholar · View at Scopus
  75. B. Le Quéré and J. M. Ghigo, “BcsQ is an essential component of the Escherichia coli cellulose biosynthesis apparatus that localizes at the bacterial cell pole,” Molecular Microbiology, vol. 72, no. 3, pp. 724–740, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. M. J. Franklin and D. E. Ohman, “Identification of algI and algI in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O acetylation,” Journal of Bacteriology, vol. 178, no. 8, pp. 2186–2195, 1996. View at Scopus
  77. R. D. Monds, P. D. Newell, R. H. Gross, and G. A. O'Toole, “Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA,” Molecular Microbiology, vol. 63, no. 3, pp. 656–679, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. D. López, H. Vlamakis, and R. Kolter, “Biofilms,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 7, article a000398, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. A. J. Spiers, D. L. Arnold, C. D. Moon, and T. M. Timms-Wilson, “A survey of A-L biofilm formation and cellulose expression amongst soil and plant-associated Pseudomonas isolates,” in Microbial Ecology of Aerial Plant Surfaces, M. J. Bailey, A. K. Lilley, T. M. Timms-Wilson, and P. T. N. Spencer-Phillips, Eds., pp. 121–132, CABI, Wallingford, UK, 2006.
  80. L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the natural environment to infectious diseases,” Nature Reviews Microbiology, vol. 2, no. 2, pp. 95–108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. T. J. Battin, W. T. Sloan, S. Kjelleberg et al., “Microbial landscapes: new paths to biofilm research,” Nature Reviews Microbiology, vol. 5, no. 1, pp. 76–81, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. H. C. Flemming and J. Wingender, “The biofilm matrix,” Nature Reviews Microbiology, vol. 8, no. 9, pp. 623–633, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Elias and E. Banin, “Multi-species biofilms: living with friendly neighbors,” FEMS Microbiology Reviews, vol. 36, no. 5, pp. 990–1004, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. O. Rendueles and J. M. Ghigo, “Multi-species biofilms: how to avoid unfriendly neighbors,” FEMS Microbiology Reviews, vol. 36, no. 5, pp. 972–989, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. G. O'Toole, H. B. Kaplan, and R. Kolter, “Biofilm formation as microbial development,” Annual Review of Microbiology, vol. 54, pp. 49–79, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. J.-U. Kreft and S. Bonhoeffer, “The evolution of groups of cooperating bacteria and the growth rate versus yield trade-off,” Microbiology, vol. 151, no. 3, pp. 637–641, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. J. J. Morris, R. E. Lenski, and E. R. Zinser, “The black queen hypothesis: evolution of dependencies through adaptive gene loss,” MBio, vol. 3, no. 2, article e00036-12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. J. L. Sachs and A. C. Hollowell, “The origins of cooperative bacterial communities,” MBio, vol. 3, no. 3, article e00099-12, 2012. View at Publisher · View at Google Scholar
  89. E. Hoshino, Y. Wada, and K. Nishizawa, “Improvements in the hygroscopic properties of cotton cellulose by treatment with an endo-type cellulase from Streptomyces sp. KSM-26,” Journal of Bioscience and Bioengineering, vol. 88, no. 5, pp. 519–525, 1999. View at Publisher · View at Google Scholar · View at Scopus