About this Journal Submit a Manuscript Table of Contents
International Journal of Ecology
Volume 2011 (2011), Article ID 287532, 7 pages
http://dx.doi.org/10.1155/2011/287532
Research Article

Learning the Hard Way: Imprinting Can Enhance Enforced Shifts in Habitat Choice

Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden

Received 29 June 2011; Revised 30 August 2011; Accepted 16 September 2011

Academic Editor: Zachariah Gompert

Copyright © 2011 Niclas Vallin and Anna Qvarnström. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Schluter, “Ecology and the origin of species,” Trends in Ecology and Evolution, vol. 16, no. 7, pp. 372–380, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. H. D. Rundle and P. Nosil, “Ecological speciation,” Ecology Letters, vol. 8, no. 3, pp. 336–352, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. G. S. Van Doorn, P. Edelaar, and F. J. Weissing, “On the origin of species by natural and sexual selection,” Science, vol. 326, no. 5960, pp. 1704–1707, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. M. Rice, A. Rudh, H. Ellegren, and A. Qvarnström, “A guide to the genomics of ecological speciation in natural animal populations,” Ecology Letters, vol. 14, no. 1, pp. 9–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. W. R. Rice and G. W. Salt, “The evolution of reproductive isolation as a correlated character under sympatric conditions: experimental evidence,” Evolution, vol. 44, no. 5, pp. 1140–1152, 1990. View at Scopus
  6. W. R. Rice, “Disruptive selection on habitat preference and the evolution of reproductive isolation: a simulation study,” Evolution, vol. 38, no. 6, pp. 1251–1260, 1984. View at Scopus
  7. P. A. Johnson, F. C. Hoppensteadt, J. J. Smith, and G. L. Bush, “Conditions for sympatric speciation: a diploid model incorporating habitat fidelity and non-habitat assortative mating,” Evolutionary Ecology, vol. 10, no. 2, pp. 187–205, 1996. View at Scopus
  8. T. J. Kawecki, “Sympatric speciation driven by beneficial mutations,” Proceedings of the Royal Society B, vol. 263, no. 1376, pp. 1515–1520, 1996. View at Scopus
  9. T. J. Kawecki, “Sympatric speciation via habitat specialization driven by deleterious mutations,” Evolution, vol. 51, no. 6, pp. 1751–1763, 1997. View at Scopus
  10. A. S. Kondrashov and F. A. Kondrashov, “Interactions among quantitative traits in the course of sympatric speciation,” Nature, vol. 400, no. 6742, pp. 351–354, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. U. Dieckmann and M. Doebeli, “On the origin of species by sympatric speciation,” Nature, vol. 400, no. 6742, pp. 354–357, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. J. D. Fry, “Multilocus models of sympatric speciation: bush versus rice versus felsenstein,” Evolution, vol. 57, no. 8, pp. 1735–1746, 2003. View at Scopus
  13. E. Mayr, Systematics and the Origin of Species, Columbia University Press, New York, NY, USA, 1942.
  14. T. Dobzhansky, Genetics and the Origin of Species, Columbia University Press, New York, NY, USA, 3rd edition, 1951.
  15. J. A. Coyne and H. A. Orr, Speciation, Sinauer Associates, Massachusetts, Mass, USA, 2004.
  16. X. Thibert-Plante and A. P. Hendry, “The consequences of phenotypic plasticity for ecological speciation,” Journal of Evolutionary Biology, vol. 24, no. 2, pp. 326–342, 2011. View at Publisher · View at Google Scholar
  17. T. D. Price, A. Qvarnström, and D. E. Irwin, “The role of phenotypic plasticity in driving genetic evolution,” Proceedings of the Royal Society B, vol. 270, no. 1523, pp. 1433–1440, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. West-Eberhard, Developmental Plasticity and Evolution, Oxford University Press, New York, NY, USA, 2003.
  19. M. J. West-Eberhard, “Developmental plasticity and the origin of species differences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 1, pp. 6543–6549, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. M. Davis and J. A. Stamps, “The effect of natal experience on habitat preferences,” Trends in Ecology and Evolution, vol. 19, no. 8, pp. 411–416, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. D. E. Irwin and T. Price, “Sexual imprinting, learning and speciation,” Heredity, vol. 82, no. 4, pp. 347–354, 1999. View at Scopus
  22. W. H. Thorpe, “The evolutionary significance of habitat selection,” Journal of Animal Ecology, vol. 14, pp. 67–70, 1945.
  23. J. Maynard Smith, “Sympatric speciation,” American Naturalist, vol. 100, pp. 637–650, 1966.
  24. J. B. Beltman and J. A. J. Metz, “Speciation: more likely through a genetic or through a learned habitat preference?” Proceedings of the Royal Society B, vol. 272, no. 1571, pp. 1455–1463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Slagsvold and K. L. Wiebe, “Social learning in birds and its role in shaping a foraging niche,” Philosophical transactions of the Royal Society of London Series B, vol. 366, no. 1567, pp. 969–977, 2011. View at Publisher · View at Google Scholar
  26. A. Qvarnström, A. M. Rice, and H. Ellegren, “Speciation in Ficedula flycatchers,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1547, pp. 1841–1852, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. G. P. Sætre, T. Borge, J. Lindell et al., “Speciation, introgressive hybridization and nonlinear rate of molecular evolution in flycatchers,” Molecular Ecology, vol. 10, no. 3, pp. 737–749, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Veen, N. Svedin, J. T. Forsman et al., “Does migration of hybrids contribute to post-zygotic isolation in flycatchers?” Proceedings of the Royal Society B, vol. 274, no. 1610, pp. 707–712, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Lundberg and R. V. Alatalo, The Pied Flycatcher, Poyser, London, UK, 1992.
  30. T. Pärt and A. Qvarnström, “Badge size in collared flycatchers predicts outcome of male competition over territories,” Animal Behaviour, vol. 54, no. 4, pp. 893–899, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Qvarnstrom, “Experimentally increased badge size increases male competition and reduces male parental care in the collared flycatcher,” Proceedings of the Royal Society B, vol. 264, no. 1385, pp. 1225–1231, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Qvarnström, C. Wiley, N. Svedin, and N. Vallin, “Life-history divergence facilitates regional coexistence of competing Ficedula flycatchers,” Ecology, vol. 90, no. 7, pp. 1948–1957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Wiley, N. Fogelberg, S. A. Sæther et al., “Direct benefits and costs for hybridizing Ficedula flycatchers,” Journal of Evolutionary Biology, vol. 20, no. 3, pp. 854–864, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Qvarnström, N. Svedin, C. Wiley, T. Veen, and L. Gustafsson, “Cross-fostering reveals seasonal changes in the relative fitness of two competing species of flycatchers,” Biology Letters, vol. 1, no. 1, pp. 68–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Veen, B. C. Sheldon, F. J. Weissing, M. E. Visser, A. Qvarnström, and G. P. Sætre, “Temporal differences in food abundance promote coexistence between two congeneric passerines,” Oecologia, vol. 162, no. 4, pp. 873–884, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Vallin, A. M. Rice, R. I. Bailey, A. Husby, and A. Qvarnström, “Positive feedback between ecological and reproductive character displacement in a young avian hybrid zone,” Evolution. In press.
  37. N. Svedin, C. Wiley, T. Veen, L. Gustafsson, and A. Qvarnström, “Natural and sexual selection against hybrid flycatchers,” Proceedings of the Royal Society B, vol. 275, no. 1635, pp. 735–744, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Qvarnström, J. V. Kehlenbeck, C. Wiley, N. Svedin, and S. A. Sæther, “Species divergence in offspring begging intensity: difference in need or manipulation of parents?” Proceedings of the Royal Society B, vol. 274, no. 1612, pp. 1003–1008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Vallin, A. M. Rice, H. Arntsen, K. Kulma, and A. Qvarnström, “Combined effects of interspecific competition and hybridization impede local coexistence of Ficedula flycatchers,” Evoutionary Ecology. In press.
  40. L. Gezelius, M. Grahn, H. Kallander, and J. Karlsson, “Habitat-related differences in clutch size of the pied flycatcher Ficedula hypoleuca,” Annales Zoologici Fennici, vol. 21, no. 3, pp. 209–212, 1984. View at Scopus
  41. T. Eeva, S. Ruuskanen, J. P. Salminen et al., “Geographical trends in the yolk carotenoid composition of the pied flycatcher (Ficedula hypoleuca),” Oecologia, pp. 1–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Jarvinen, “Clutch-size variation in the pied flycatcher Ficedula hypoleuca,” Ibis, vol. 131, no. 4, pp. 572–577, 1989. View at Scopus
  43. P. Adamík and S. Bureš, “Experimental evidence for species-specific habitat preferences in two flycatcher species in their hybrid zone,” Naturwissenschaften, vol. 94, no. 10, pp. 859–863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. G. P. Sætre, M. Král, S. Bureš, and R. A. Ims, “Dynamics of a clinal hybrid zone and a comparison with island hybrid zones of flycatchers (Ficedula hypoleuca and F. Albicollis),” Journal of Zoology, vol. 247, no. 1, pp. 53–64, 1999. View at Scopus
  45. J. H. Van Balen, “Observations on the post-fledging dispersal of the pied flycatcher, Ficedula hypoleuca,” Ardea, vol. 67, pp. 134–137, 1979.
  46. R. Berndt and W. Winkel, “Transfer-experiments on problems of imprinting to the birthplace in the Pied Flycatcher Ficedula hypoleuca,” Journal of Ornithology, vol. 120, no. 1, pp. 41–53, 1979. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Burger and C. Both, “Translocation as a novel approach to study effects of a new breeding habitat on reproductive output in wild birds,” PLoS ONE, vol. 6, no. 3, article e18143, 2011. View at Publisher · View at Google Scholar
  48. M. F. Benard and S. J. McCauley, “Integrating across life-history stages: consequences of natal habitat effects on dispersal,” American Naturalist, vol. 171, no. 5, pp. 553–567, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Lens and A. A. Dhondt, “Effects of habitat fragmentation on the timing of crested tit Parus cristatus natal dispersal,” Ibis, vol. 136, no. 2, pp. 147–152, 1994. View at Scopus
  50. R. A. Duckworth and L. E. B. Kruuk, “Evolution of genetic integration between dispersal and colonization ability in a bird,” Evolution, vol. 63, no. 4, pp. 968–977, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Slagsvold and K. L. Wiebe, “Learning the ecological niche,” Proceedings of the Royal Society B, vol. 274, no. 1606, pp. 19–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Chernetsov, L. V. Sokolov, V. Kosarev et al., “Sex-related natal dispersal of Pied Flycatchers: how far away from home?” Condor, vol. 108, no. 3, pp. 711–717, 2006. View at Scopus
  53. B. Tonnis, P. R. Grant, B. R. Grant, and K. Petren, “Habitat selection and ecological speciation in Galápagos warbler finches (Certhidea olivacea and Certhidea fusca),” Proceedings of the Royal Society B, vol. 272, no. 1565, pp. 819–826, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Felsenstein, “Skepticism towards Santa Rosalia, or why are there so few kinds of animals,” Evolution, vol. 35, pp. 124–138, 1981.
  55. R. F. Lachlan and M. R. Servedio, “Song learning accelerates allopatric speciation,” Evolution, vol. 58, no. 9, pp. 2049–2063, 2004. View at Scopus