About this Journal Submit a Manuscript Table of Contents
International Journal of Ecology
Volume 2012 (2012), Article ID 154686, 12 pages
http://dx.doi.org/10.1155/2012/154686
Review Article

Habitat Choice and Speciation

1Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
2Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, 36310 Vigo, Spain
3Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK

Received 2 August 2011; Revised 2 November 2011; Accepted 28 November 2011

Academic Editor: Rui Faria

Copyright © 2012 Sophie E. Webster et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Schluter, “Evidence for ecological speciation and its alternative,” Science, vol. 323, no. 5915, pp. 737–741, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. C. M. Smadja and R. K. Butlin, “A framework for comparing processes of speciation in the presence of gene flow,” Molecular Ecology, vol. 20, no. 24, pp. 5123–5140, 2011. View at Publisher · View at Google Scholar · View at PubMed
  3. J. M. Sobel, G. F. Chen, L. R. Watt, and D. W. Schemske, “The biology of speciation,” Evolution, vol. 64, no. 2, pp. 295–315, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. P. Nosil, L. J. Harmon, and O. Seehausen, “Ecological explanations for (incomplete) speciation,” Trends in Ecology and Evolution, vol. 24, no. 3, pp. 145–156, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. Kirkpatrick and N. Barton, “Chromosome inversions, local adaptation and speciation,” Genetics, vol. 173, no. 1, pp. 419–434, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. S. Via, “Natural selection in action during speciation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, pp. 9939–9946, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. R. Servedio, G. S.V. Doorn, M. Kopp, A. M. Frame, and P. Nosil, “Magic traits in speciation: magic but not rare?” Trends in Ecology and Evolution, vol. 26, no. 8, pp. 389–397, 2011. View at Publisher · View at Google Scholar · View at PubMed
  8. J. A. Coyne and H. A. Orr, Speciation, Sinauer, Sunderland, Mass, USA, 2004.
  9. D. J. Futuyma, “Ecological specialization and generalization,” in Evolutionary Ecology, C. W. Fox, D. A. Roff, and D. J. Fairbairn, Eds., pp. 177–189, Oxford University Press, New York, NY, USA, 2001.
  10. R. F. Denno, M. S. McClure, and J. R. Ott, “Interspecific interactions in phytophagous insects: competition reexamined and resurrected,” Annual Review of Entomology, vol. 40, pp. 297–331, 1995. View at Scopus
  11. E. Tauber, H. Roe, R. Costa, J. M. Hennessy, and C. P. Kyriacou, “Temporal mating isolation driven by a behavioral gene in Drosophila,” Current Biology, vol. 13, no. 2, pp. 140–145, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Kirkpatrick and V. Ravigné, “Speciation by natural and sexual selection: models and experiments,” American Naturalist, vol. 159, no. 3, pp. S22–S35, 2002. View at Scopus
  13. V. Ravigné, U. Dieckmann, and I. Olivieri, “Live where you thrive: joint evolution of habitat choice and local adaptation facilitates specialization and promotes diversity,” American Naturalist, vol. 174, no. 4, pp. E141–E169, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. M. R. Servedio and M. A. F. Noor, “The role of reinforcement in speciation: theory and data,” Annual Review of Ecology, Evolution, and Systematics, vol. 34, pp. 339–364, 2003. View at Scopus
  15. A. P. Hendry, P. Nosil, and L. H. Rieseberg, “The speed of ecological speciation,” Functional Ecology, vol. 21, no. 3, pp. 455–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Jaenike and R. D. Holt, “Genetic variation for habitat preference: evidence and explanations,” American Naturalist, vol. 137, pp. S67–S90, 1991. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Gavrilets, Fitness landscapes and the Origin of Species, Princeton University Press, Princeton, NJ, USA, 2004.
  18. J. Felsenstein, “Skepticism towards Santa Rosalia, or why are there so few kinds of animals?” Evolution, vol. 35, pp. 124–138, 1981.
  19. B. C. Haller, L. F. De Léon, G. Rolshausen, K. M. Gotanda, and A. P. Hendry, “Magic traits: distinguishing the important from the trivial,” Trends in Ecology and Evolution, vol. 27, no. 1, pp. 4–5, 2012. View at Publisher · View at Google Scholar · View at PubMed
  20. T. de Meeûs, Y. Michalakis, F. Renaud, and I. Olivieri, “Polymorphism in heterogeneous environments, evolution of habitat selection and sympatric speciation: soft and hard selection models,” Evolutionary Ecology, vol. 7, no. 2, pp. 175–198, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Edelaar, A. M. Siepielski, and J. Clobert, “Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology,” Evolution, vol. 62, no. 10, pp. 2462–2472, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. D. W. Pfennig, M. A. Wund, E. C. Snell-Rood, T. Cruickshank, C. D. Schlichting, and A. P. Moczek, “Phenotypic plasticity's impacts on diversification and speciation,” Trends in Ecology and Evolution, vol. 25, no. 8, pp. 459–467, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. P. W. Hedrick, “Genetic-polymorphism in heterogeneous environments: a decade later,” Annual Review of Ecology and Systematics, vol. 17, pp. 535–566, 1986.
  24. H. Levene, “Genetic equilibrium when more than one ecological niche is available,” American Naturalist, vol. 87, pp. 331–333, 1953.
  25. J. Maynard Smith, “Sympatric speciation,” American Naturalist, vol. 100, pp. 637–650, 1966.
  26. D. Udovic, “Frequency-dependent selection, disruptive selection, and the evolution of reproductive isolation,” American Naturalist, vol. 116, pp. 621–641, 1980.
  27. D. Sloan Wilson and M. Turelli, “Stable underdominance and the evolutionary invasion of empty niches,” American Naturalist, vol. 127, no. 6, pp. 835–850, 1986. View at Scopus
  28. S. R. Diehl and G. L. Bush, “The role of habitat preference in adaptation and speciation,” in Speciation and Its Consequences, D. Otte and J. Endler, Eds., pp. 345–365, Sinauer Associates, Sunderland, Mass, USA, 1989.
  29. V. Ravigné, I. Olivieri, and U. Dieckmann, “Implications of habitat choice for protected polymorphisms,” Evolutionary Ecology Research, vol. 6, no. 1, pp. 125–145, 2004. View at Scopus
  30. J. A. Guldemond and A. F. G. Dixon, “Specificity and daily cycle of release of sex pheromones in aphids: a case of reinforcement,” Biological Journal of the Linnean Society, vol. 52, no. 3, pp. 287–303, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Diabaté, A. Dao, A. S. Yaro et al., “Spatial swarm segregation and reproductive isolation between the molecular forms of Anopheles gambiae,” Proceedings of the Royal Society B, vol. 276, no. 1676, pp. 4215–4222, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. K. W. Matsubayashi, I. Ohshima, and P. Nosil, “Ecological speciation in phytophagous insects,” Entomologia Experimentalis et Applicata, vol. 134, no. 1, pp. 1–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. G. L. Bush, J. L. Feder, S. H. Berlocher, B. A. McPheron, D. C. Smith, and C. A. Chilcote, “Sympatric origins of R. pomonella,” Nature, vol. 339, no. 6223, p. 346, 1989. View at Scopus
  34. J. L. Feder, J. B. Roethele, B. Wlazlo, and S. H. Berlocher, “Selective maintenance of allozyme differences among sympatric host races of the apple maggot fly,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 21, pp. 11417–11421, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. D. C. Smith, “Heritable divergence of Rhagoletis pomonella host races by seasonal asynchrony,” Nature, vol. 336, no. 6194, pp. 66–67, 1988. View at Scopus
  36. D. Schwarz and B. A. McPheron, “When ecological isolation breaks down: sexual isolation is an incomplete barrier to hybridization between Rhagoletis species,” Evolutionary Ecology Research, vol. 9, no. 5, pp. 829–841, 2007. View at Scopus
  37. C. Linn, J. L. Feder, S. Nojima, H. R. Dambroski, S. H. Berlocher, and W. Roelofs, “Fruit odor discrimination and sympatric host race formation in Rhagoletis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 20, pp. 11490–11493, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. C. E. Linn, H. Dambroski, S. Nojima, J. L. Feder, S. H. Berlocher, and W. L. Roelofs, “Variability in response specificity of apple, hawthorn, and flowering dogwood-infesting Rhagoletis flies to host fruit volatile blends: implications for sympatric host shifts,” Entomologia Experimentalis et Applicata, vol. 116, no. 1, pp. 55–64, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. L. Feder, “The apple maggot fly, Rhagoletis pomonella: flies in the face of conventional wisdom about speciation?” in Endless Forms, D. J. Howard and S. H. Berlocher, Eds., pp. 130–144, Oxford University Press, New York, NY, USA, 1998.
  40. J. L. Feder, “The effects of parasitoids on sympatric host races of Rhagoletis pomonella (Diptera: Tephritidae),” Ecology, vol. 76, no. 3, pp. 801–813, 1995. View at Scopus
  41. J. L. Feder, J. B. Roethele, K. Filchak, J. Niedbalski, and J. Romero-Severson, “Evidence for inversion polymorphism related to sympatric host race formation in the apple maggot fly, Rhagoletis pomonella,” Genetics, vol. 163, no. 3, pp. 939–953, 2003. View at Scopus
  42. P. A. Johnson, F. C. Hoppensteadt, J. J. Smith, and G. L. Bush, “Conditions for sympatric speciation: a diploid model incorporating habitat fidelity and non-habitat assortative mating,” Evolutionary Ecology, vol. 10, no. 2, pp. 187–205, 1996. View at Scopus
  43. C. E. Linn, H. R. Dambroski, J. L. Feder, S. H. Berlocher, S. Nojima, and W. L. Roelofs, “Postzygotic isolating factor in sympatric speciation in Rhagoletis flies: reduced response of hybrids to parental host-fruit odors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 51, pp. 17753–17758, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. C. Caillaud and S. Via, “Specialized feeding behavior influences both ecological specialization and assortative mating in sympatric host races of pea aphids,” American Naturalist, vol. 156, no. 6, pp. 606–621, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Smadja, P. Shi, R. K. Butlin, and H. M. Robertson, “Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum,” Molecular Biology and Evolution, vol. 26, no. 9, pp. 2073–2086, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. D. J. Hawthorne and S. Via, “Genetic linkage of ecological specialization and reproductive isolation in pea aphids,” Nature, vol. 412, no. 6850, pp. 904–907, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. M. R. Servedio, “The role of linkage disequilibrium in the evolution of premating isolation,” Heredity, vol. 102, no. 1, pp. 51–56, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. J. M. Davis and J. A. Stamps, “The effect of natal experience on habitat preferences,” Trends in Ecology and Evolution, vol. 19, no. 8, pp. 411–416, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. P. Nosil, “Divergent host plant adaptation and reproductive isolation between ecotypes of Timema cristinae walking sticks,” American Naturalist, vol. 169, no. 2, pp. 151–162, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. C. P. Sandoval, Geographic, ecological and behavioral factors affecting spatial variation in color or morph frequency in the walking-stick Timema cristinae, Ph.D. thesis, University of California, Santa Barbara, Calif, USA, 1993.
  51. P. Nosil, C. P. Sandoval, and B. J. Crespi, “The evolution of host preference in allopatric vs. parapatric populations of Timema cristinae walking-sticks,” Journal of Evolutionary Biology, vol. 19, no. 3, pp. 929–942, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. P. Nosil, B. J. Crespi, and C. P. Sandoval, “Host-plant adaptation drives the parallel evolution of reproductive isolation,” Nature, vol. 417, no. 6887, pp. 440–443, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. P. Nosil, T. H. Vines, and D. J. Funk, “Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats,” Evolution, vol. 59, no. 4, pp. 705–719, 2005. View at Scopus
  54. C. Smadja and R. K. Butlin, “On the scent of speciation: the chemosensory system and its role in premating isolation,” Heredity, vol. 102, no. 1, pp. 77–97, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. J. Feder, S. Egan, and A. A. Forbes, “Ecological adaptation and speciation: the evolutionary significance of habitat avoidance as a post-zygotic reproductive barrier to gene flow,” International Journal of Ecology. In press.
  56. A. P. Hendry, “Ecological speciation! Or the lack thereof?” Canadian Journal of Fisheries and Aquatic Sciences, vol. 66, no. 8, pp. 1383–1398, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Mallet, “Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1506, pp. 2971–2986, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. R. B. Payne, L. L. Payne, and J. L. Woods, “Song learning in brood-parasitic indigobirds Vidua chalybeata: song mimicry of the host species,” Animal Behaviour, vol. 55, no. 6, pp. 1537–1553, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. R. B. Payne, L. L. Payne, J. L. Woods, and M. D. Sorenson, “Imprinting and the origin of parasite-host species associations in brood-parasitic indigobirds, Vidua chalybeata,” Animal Behaviour, vol. 59, no. 1, pp. 69–81, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. C. N. Balakrishnan, K. M. Sefc, and M. D. Sorenson, “Incomplete reproductive isolation following host shift in brood parasitic indigobirds,” Proceedings of the Royal Society B, vol. 276, no. 1655, pp. 219–228, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. R. B. Payne, C. R. Barlow, C. N. Balakrishnan, and M. D. Sorenson, “Song mimicry of black-bellied Firefinch Lagonosticta rara and other finches by the brood-parasitic Cameroon indigobird Vidua camerunensis in West Africa,” Ibis, vol. 147, no. 1, pp. 130–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. K. M. Sefc, R. B. Payne, and M. D. Sorenson, “Genetic continuity of brood-parasitic indigobird species,” Molecular Ecology, vol. 14, no. 5, pp. 1407–1419, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. R. B. Payne, “Nestling mouth markings and colors of Old World finches Estrildidae: mimicry and coevolution of nestling finches and their brood parasite,” Miscellaneous Publications Museum of Zoology University of Michigan, vol. 194, pp. 1–45, 2005.
  64. P. Nosil and C. P. Sandoval, “Ecological niche dimensionality and the evolutionary diversification of stick insects,” PLoS ONE, vol. 3, no. 4, Article ID e1907, 2008. View at Publisher · View at Google Scholar · View at PubMed
  65. E. G. Boulding, “Mechanisms of differential survival and growth of two species of Littorina on wave-exposed and on protected shores,” Journal of Experimental Marine Biology and Ecology, vol. 169, no. 2, pp. 139–166, 1993. View at Publisher · View at Google Scholar · View at Scopus
  66. K. M. M. Jones and E. G. Boulding, “State-dependent habitat selection by an intertidal snail: the costs of selecting a physically stressful microhabitat,” Journal of Experimental Marine Biology and Ecology, vol. 242, no. 2, pp. 149–177, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. R. P. Kovach and D. A. Tallmon, “Strong influence of microhabitat on survival for an intertidal snail, Nucella lima,” Hydrobiologia, vol. 652, no. 1, pp. 49–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. L. P. Miller, M. J. O'Donnell, and K. J. Mach, “Dislodged but not dead: survivorship of a high intertidal snail following wave dislodgement,” Journal of the Marine Biological Association of the United Kingdom, vol. 87, no. 3, pp. 735–739, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. D. A. Antwi and C. Ameyaw-Akumfi, “Migrational orientation in two species of littoral gastropods (Littorina angulifera and Nerita senegalensis),” Marine Biology, vol. 94, no. 2, pp. 259–263, 1987. View at Publisher · View at Google Scholar · View at Scopus
  70. M. G. Chapman, “Assessment of variability in responses of intertidal periwinkles to experimental transplantations,” Journal of Experimental Marine Biology and Ecology, vol. 236, no. 2, pp. 171–190, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. D. G. Reid, Systematics and Evolution of Littorina, Ray Society, London, UK, 1996.
  72. E. Rolán-Alvarez, “Sympatric speciation as a by-product of ecological adaptation in the Galician Littorina saxatilis hybrid zone,” Journal of Molluscan Studies, vol. 73, no. 1, pp. 1–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. R. K. Butlin, J. Galindo, and J. W. Grahame, “Sympatric, parapatric or allopatric: the most important way to classify speciation?” Philosophical Transactions of the Royal Society B, vol. 363, no. 1506, pp. 2997–3007, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. K. Johannesson, M. Panova, P. Kemppainen, C. André, E. Rolan-Alvarez, and R. K. Butlin, “Repeated evolution of reproductive isolation in a marine snail: unveiling mechanisms of speciation,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1547, pp. 1735–1747, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. M. Panova, J. Hollander, and K. Johannesson, “Site-specific genetic divergence in parallel hybrid zones suggests nonallopatric evolution of reproductive barriers,” Molecular Ecology, vol. 15, no. 13, pp. 4021–4031, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. C. S. Wilding, R. K. Butlin, and J. Grahame, “Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers,” Journal of Evolutionary Biology, vol. 14, no. 4, pp. 611–619, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Galindo, P. MorÁn, and E. RolÁn-Alvarez, “Comparing geographical genetic differentiation between candidate and noncandidate loci for adaptation strengthens support for parallel ecological divergence in the marine snail Littorina saxatilis,” Molecular Ecology, vol. 18, no. 5, pp. 919–930, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. R. Cruz, C. Vilas, J. Mosquera, and C. García, “Relative contribution of dispersal and natural selection to the maintenance of a hybrid zone in Littorina,” Evolution, vol. 58, no. 12, pp. 2734–2746, 2004. View at Scopus
  79. J. Hollander, M. Lindegarth, and K. Johannesson, “Local adaptation but not geographical separation promotes assortative mating in a snail,” Animal Behaviour, vol. 70, no. 5, pp. 1209–1219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. S. L. Hull, “Assortative mating between two distinct micro-allopatric populations of Littorina saxatilis (Olivi) on the northeast coast of England,” Hydrobiologia, vol. 378, no. 1–3, pp. 79–88, 1998. View at Scopus
  81. A. R. Pickles and J. Grahame, “Mate choice in divergent morphs of the gastropod mollusc Littorina saxatilis (Olivi): speciation in action?” Animal Behaviour, vol. 58, no. 1, pp. 181–184, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. J. Erlandsson, E. Rolán-Alvarez, and K. Johannesson, “Migratory differences between ecotypes of the snail Littorina saxatilis on Galician rocky shores,” Evolutionary Ecology, vol. 12, no. 8, pp. 913–924, 1998. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Janson, “Selection and migration in two distinct phenotypes of Littorina saxatilis in Sweden,” Oecologia, vol. 59, no. 1, pp. 58–61, 1983. View at Publisher · View at Google Scholar · View at Scopus
  84. B. J. Balkau and M. W. Feldman, “Selection for migration modification,” Genetics, vol. 74, no. 1, pp. 171–174, 1973. View at Scopus
  85. M. Slatkin, “Gene flow in natural populations,” Annual Review of Ecology and Systematics, vol. 16, pp. 393–430, 1985. View at Scopus
  86. S. Bensch and M. Åkesson, “Ten years of AFLP in ecology and evolution: why so few animals?” Molecular Ecology, vol. 14, no. 10, pp. 2899–2914, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. N. H. Barton and G. M. Hewitt, “Analysis of hybrid zones,” Annual Review of Ecology and Systematics, vol. 16, pp. 113–148, 1985. View at Scopus
  88. J. W. Grahame, C. S. Wilding, and R. K. Butlin, “Adaptation to a steep environmental gradient and an associated barrier to gene exchange in Littorina saxatilis,” Evolution, vol. 60, no. 2, pp. 268–278, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Rolán-Alvarez, K. Johannesson, and J. Erlandsson, “The maintenance of a cline in the marine snail Littorina saxatilis: the role of home site advantage and hybrid fitness,” Evolution, vol. 51, no. 6, pp. 1838–1847, 1997. View at Scopus
  90. M. Carballo, A. Caballero, and E. Rolán-Alvarez, “Habitat-dependent ecotype micro-distribution at the mid-shore in natural populations of Littorina saxatilis,” Hydrobiologia, vol. 548, no. 1, pp. 307–311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. C. J. MacCallum, B. Nürnberger, N. H. Barton, and J. M. Szymur, “Habitat preference in the Bombina hybrid zone in Croatia,” Evolution, vol. 52, no. 1, pp. 227–239, 1998. View at Scopus
  92. D. G. Reid, “The comparative morphology, phylogeny and evolution of the gastropod family littorinidae,” Philosophical Transactions B, vol. 324, no. 1220, pp. 1–110, 1989. View at Scopus
  93. H.D. Rundle and J. W. Boughman, “Behavioural ecology and speciation,” in Evolutionary Behavioral Ecology, D. F. Westneat and C. W. Fox, Eds., Oxford University Press, New York, NY, USA, 2010.
  94. J. Hollander and R. K. Butlin, “The adaptive value of phenotypic plasticity in two ecotypes of a marine gastropod,” BMC Evolutionary Biology, vol. 10, no. 1, article 333, 2010. View at Publisher · View at Google Scholar · View at PubMed
  95. J. Hollander, M. L. Collyer, D. C. Adams, and K. Johannesson, “Phenotypic plasticity in two marine snails: constraints superseding life history,” Journal of Evolutionary Biology, vol. 19, no. 6, pp. 1861–1872, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. S. Sadedin, J. Hollander, M. Panova, K. Johannesson, and S. Gavrilets, “Case studies and mathematical models of ecological speciation. 3: ecotype formation in a Swedish snail,” Molecular Ecology, vol. 18, no. 19, pp. 4006–4023, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. G. Chelazzi, P. Dellasantina, and M. Vannini, “Long-lasting substrate marking in the collective homing of the gastropod Nerita textilis,” Biological Bulletin, vol. 168, pp. 214–221, 1985.
  98. M. S. Davies and P. Beckwith, “Role of mucus trails and trail-following in the behaviour and nutrition of the periwinkle Littorina littorea,” Marine Ecology Progress Series, vol. 179, pp. 247–257, 1999. View at Scopus
  99. K. Johannesson, J. N. Havenhand, P. R. Jonsson, M. Lindegarth, A. Sundin, and J. Hollander, “Male discrimination of female mucous trails permits assortative mating in a marine snail species,” Evolution, vol. 62, no. 12, pp. 3178–3184, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. C. Chapperon and L. Seuront, “Cue synergy in Littorina littorea navigation following wave dislodgement,” Journal of the Marine Biological Association of the United Kingdom, vol. 89, no. 6, pp. 1133–1136, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. E. Rolán-Alvarez, J. Erlandsson, K. Johannesson, and R. Cruz, “Mechanisms of incomplete prezygotic reproductive isolation in an intertidal snail: testing behavioural models in wild populations,” Journal of Evolutionary Biology, vol. 12, no. 5, pp. 879–890, 1999. View at Scopus