About this Journal Submit a Manuscript Table of Contents
International Journal of Ecology
Volume 2012 (2012), Article ID 192345, 15 pages
http://dx.doi.org/10.1155/2012/192345
Research Article

Use of Host-Plant Trait Space by Phytophagous Insects during Host-Associated Differentiation: The Gape-and-Pinch Model

Department of Biology, University of New Brunswick, P.O. Box 4400, Fredericton, NB, Canada E3B 5A3

Received 22 July 2011; Accepted 6 November 2011

Academic Editor: Andrew Hendry

Copyright © 2012 Stephen B. Heard. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Sharp, “Insects, part I,” in The Cambridge Natural History, S. F. Harmer and A. E. Shipley, Eds., pp. 83–565, MacMillan and Co., London, UK, 1895.
  2. E. O. Wilson, The Diversity of Life, W.W. Norton, New York, NY, USA, 1992.
  3. P. J. Mayhew, “Why are there so many insect species? Perspectives from fossils and phylogenies,” Biological Reviews, vol. 82, no. 3, pp. 425–454, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. R. Strong Jr., J. H. Lawton, and R. Southwood, Insects on Plants: Community Patterns and Mechanisms, Blackwell Scientific, Oxford, UK, 1984.
  5. C. Mitter, B. Farrell, and B. Wiegmann, “The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification?” American Naturalist, vol. 132, no. 1, pp. 107–128, 1988. View at Scopus
  6. B. D. Farrell, “'Inordinate fondness' explained: Why are there so many beetles?” Science, vol. 281, no. 5376, pp. 555–559, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. E. A. Bernays and R. F. Chapman, Host-Plant Selection by Phytophagous Insects, Chapman and Hall, New York, NY, USA, 1994.
  8. P. D. N. Hebert, E. H. Penton, J. M. Burns, D. H. Janzen, and W. Hallwachs, “Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 41, pp. 14812–14817, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. B. Joy and B. J. Crespi, “Adaptive radiation of gall-inducing insects within a single host-plant species,” Evolution, vol. 61, no. 4, pp. 784–795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Condon, S. J. Scheffer, M. L. Lewis, and S. M. Swensen, “Hidden neotropical diversity: Greater than the sum of its parts,” Science, vol. 320, no. 5878, pp. 928–931, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Darwin, The Origin of Species, 1968 reprint, Penguin Books, London, UK, 1859.
  12. B. D. Walsh, “The apple-worm and the apple-maggot,” Tilton's Journal of Horticulture and Florist's Companion, vol. 2, pp. 338–343, 1867.
  13. J. O. Stireman, J. D. Nason, and S. B. Heard, “Host-associated genetic differentiation in phytophagous insects: General phenomenon or isolated exceptions? Evidence from a goldenrod-insect community,” Evolution, vol. 59, no. 12, pp. 2573–2587, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. K. W. Matsubayashi, I. Ohshima, and P. Nosil, “Ecological speciation in phytophagous insects,” Entomologia Experimentalis et Applicata, vol. 134, no. 1, pp. 1–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. H. Berlocher and J. L. Feder, “Sympatric speciation in phytophagous insects: Moving beyond controversy?” Annual Review of Entomology, vol. 47, pp. 773–815, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Drès and J. Mallet, “Host races in plant-feeding insects and their importance in sympatric speciation,” Philosophical Transactions of the Royal Society B, vol. 357, no. 1420, pp. 471–492, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. J. O. Stireman III, J. D. Nason, S. B. Heard, and J. M. Seehawer, “Cascading host-associated genetic differentiation in parasitoids of phytophagous insects,” Proceedings of the Royal Society B, vol. 273, no. 1586, pp. 523–530, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Skúlason, S. S. Snorrason, and B. Jónsson, “Sympatric morphs, populations and speciation in freshwater fish with emphasis on arctic charr,” in Evolution of Biological Diversity, A. E. Magurran and R. M. May, Eds., Oxford University Press, Oxford, UK, 1999.
  19. A. P. Hendry, S. K. Huber, L. F. De León, A. Herrel, and J. Podos, “Disruptive selection in a bimodal population of Darwin's finches,” Proceedings of the Royal Society B: Biological Sciences, vol. 276, no. 1657, pp. 753–759, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Antonovics and A. D. Bradshaw, “Evolution in closely adjacent plant populations. 8. Clinal patterns at a mine boundary,” Heredity, vol. 25, pp. 349–362, 1970.
  21. E. B. Rosenblum and L. J. Harmon, “‘same same but different’: replicated ecological speciation at white sands,” Evolution, vol. 65, no. 4, pp. 946–960, 2011. View at Publisher · View at Google Scholar
  22. H. D. Rundle and P. Nosil, “Ecological speciation,” Ecology Letters, vol. 8, no. 3, pp. 336–352, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Peccoud and J. C. Simon, “The pea aphid complex as a model of ecological speciation,” Ecological Entomology, vol. 35, no. 1, pp. 119–130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. P. Hendry, D. I. Bolnick, D. Berner, and C. L. Peichel, “Along the speciation continuum in sticklebacks,” Journal of Fish Biology, vol. 75, no. 8, pp. 2000–2036, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. L. Feder, S. H. Berlocher, and S. B. Opp, “Sympatric host-race formation and speciation in Rhagoletis (Diptera: Tephritidae): a tale of two species for Charles D,” in Genetic Structure and Local Adaptation in Natural Insect Populations, S. Mopper, Ed., pp. 408–441, Chapman and Hall, New York, NY, USA, 1998.
  26. J. L. Feder, T. H. Powell, K. Filchak, and B. Leung, “The diapause response of Rhagoletis pomonella to varying environmental conditions and its significance for geographic and host plant-related adaptation,” Entomologia Experimentalis et Applicata, vol. 136, no. 1, pp. 31–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. W. G. Abrahamson and A. E. Weis, Evolutionary Ecology Across Three Trophic Levels: Goldenrods, Gallmakers, and Natural Enemies, Princeton University Press, Princeton, NJ, USA, 1997.
  28. T. P. Craig and J. K. Itami, “Divergence of Eurosta solidaginis in response to host plant variation and natural enemies,” Evolution, vol. 65, no. 3, pp. 802–817, 2011. View at Publisher · View at Google Scholar
  29. S. H. Berlocher, “Radiation and divergence in the Rhagoletis pomonella species group: inferences from allozymes,” Evolution, vol. 54, no. 2, pp. 543–557, 2000. View at Scopus
  30. J. D. Nason, S. B. Heard, and F. R. Williams, “Host-associated genetic differentiation in the goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis (Lepidoptera: Gelechiidae),” Evolution, vol. 56, no. 7, pp. 1475–1488, 2002. View at Scopus
  31. A. M. Dickey and R. F. Medina, “Testing host-associated differentiation in a quasi-endophage and a parthenogen on native trees,” Journal of Evolutionary Biology, vol. 23, no. 5, pp. 945–956, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. P. Carroll and C. Boyd, “Host race radiation in the soapberry bug: natural history with the history,” Evolution, vol. 46, no. 4, pp. 1052–1069, 1992. View at Scopus
  33. D. J. Funk, “Isolating a role for natural selection in speciation: host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles,” Evolution, vol. 52, no. 6, pp. 1744–1759, 1998. View at Scopus
  34. S. Via, A. C. Bouck, and S. Skillman, “Reproductive isolation between divergent races of pea aphids on two hosts. II. Selection against migrants and hybrids in the parental environments,” Evolution, vol. 54, no. 5, pp. 1626–1637, 2000. View at Scopus
  35. I. Emelianov, F. Simpson, P. Narang, and J. Mallet, “Host choice promotes reproductive isolation between host races of the larch budmoth Zeiraphera diniana,” Journal of Evolutionary Biology, vol. 16, no. 2, pp. 208–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Ohshima, “Host-associated pre-mating reproductive isolation between host races of Acrocercops transecta: mating site preferences and effect of host presence on mating,” Ecological Entomology, vol. 35, no. 2, pp. 253–257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Ohshima, “Host race formation in the leaf-mining moth Acrocercops transecta (Lepidoptera: Gracillariidae),” Biological Journal of the Linnean Society, vol. 93, no. 1, pp. 135–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Nyman, “To speciate, or not to speciate? Resource heterogeneity, the subjectivity of similarity, and the macroevolutionary consequences of niche-width shifts in plant-feeding insects,” Biological Reviews, vol. 85, no. 2, pp. 393–411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Walton, A. E. Weis, and J. P. Lichter, “Oviposition behavior and response to plant height by Eurosta solidaginis Fitch (Diptera: Tephritidae),” Annals of the Entomological Society of America, vol. 83, pp. 509–514, 1990.
  40. S. T. How, W. G. Abrahamson, and T. P. Craig, “Role of host plant phenology in host use by Eurosta solidaginis (Diptera: Tephritidae) on Solidago (Compositae),” Environmental Entomology, vol. 22, no. 2, pp. 388–396, 1993. View at Scopus
  41. T. P. Craig, J. K. Itami, W. G. Abrahamson, and J. D. Horner, “Behavioral evidence for host-race formation in Eurosta solidaginis,” Evolution, vol. 47, no. 6, pp. 1696–1710, 1993. View at Scopus
  42. B. Schmid and C. Dolt, “Effects of maternal and paternal environment and genotype on offspring phenotype in Solidago altissima L,” Evolution, vol. 48, no. 5, pp. 1525–1549, 1994. View at Scopus
  43. J. N. Maloof, “QTL for plant growth and morphology,” Current Opinion in Plant Biology, vol. 6, no. 1, pp. 85–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. M. T. J. Johnson and A. A. Agrawal, “Plant genotype and environment interact to shape a diverse arthropod community on evening primrose (Oenothera biennis),” Ecology, vol. 86, no. 4, pp. 874–885, 2005. View at Scopus
  45. R. A. Rapp and J. F. Wendel, “Epigenetics and plant evolution,” New Phytologist, vol. 168, no. 1, pp. 81–91, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. A. A. Winn, “Adaptation to fine-grained environmental variation: an analysis of within-individual leaf variation in an annual plant,” Evolution, vol. 50, no. 3, pp. 1111–1118, 1996. View at Scopus
  47. M. C. Singer, D. Ng, D. Vasco, and C. D. Thomas, “Rapidly evolving associations among oviposition preferences fail to constrain evolution of insect diet,” American Naturalist, vol. 139, no. 1, pp. 9–20, 1992. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Janz and S. Nylin, “The role of female search behaviour in determining host plant range in plant feeding insects: a test of the information processing hypothesis,” Proceedings of the Royal Society B, vol. 264, no. 1382, pp. 701–707, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. D. I. Bolnick, R. Svanbäck, M. S. Araújo, and L. Persson, “Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 24, pp. 10075–10079, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. D. I. Bolnick, R. Svanbäck, J. A. Fordyce et al., “The ecology of individuals: incidence and implications of individual specialization,” American Naturalist, vol. 161, no. 1, pp. 1–28, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. L. M. Evans, G. J. Allan, S. M. Shuster, S. A. Woolbright, and T. G. Whitham, “Tree hybridization and genotypic variation drive cryptic speciation of a specialist mite herbivore,” Evolution, vol. 62, no. 12, pp. 3027–3040, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. T. P. Craig, J. K. Itami, T. Ohgushi, Y. Ando, and S. Utsumi, “Bridges and barriers to host shifts resulting from host plant genotypic variation,” Journal of Plant Interactions, vol. 6, no. 2-3, pp. 141–145, 2011. View at Publisher · View at Google Scholar
  53. D. I. Bolnick, “Sympatric speciation in threespine stickleback: why not?” International Journal of Ecology, vol. 2011, Article ID 942847, 15 pages, 2011.
  54. M. R. Servedio and M. A. F. Noor, “The role of reinforcement in speciation: theory and data,” Annual Review of Ecology, Evolution, and Systematics, vol. 34, pp. 339–364, 2003. View at Scopus
  55. P. Nosil, D. J. Funk, and D. Ortiz-Barrientos, “Divergent selection and heterogeneous genomic divergence,” Molecular Ecology, vol. 18, no. 3, pp. 375–402, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Nosil, S. P. Egan, and D. J. Funk, “Heterogeneous genomic differentiation between walking-stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection,” Evolution, vol. 62, no. 2, pp. 316–336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. X. Thibert-Plante and A. P. Hendry, “When can ecological speciation be detected with neutral loci?” Molecular Ecology, vol. 19, no. 11, pp. 2301–2314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. B. J. Crespi, “Vicious circles: positive feedback in major evolutionary and ecological transitions,” Trends in Ecology and Evolution, vol. 19, no. 12, pp. 627–633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. A. P. Hendry, “Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation,” Evolutionary Ecology Research, vol. 6, no. 8, pp. 1219–1236, 2004. View at Scopus
  60. K. Räsänen and A. P. Hendry, “Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification,” Ecology Letters, vol. 11, no. 6, pp. 624–636, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. A. F. Agrawal, J. L. Feder, and P. Nosil, “Ecological divergence and the origins of intrinsic postmating isolation with gene flow,” International Journal of Ecology, vol. 2011, Article ID 435357, 15 pages, 2011. View at Publisher · View at Google Scholar
  62. J. A. Coyne and H. A. Orr, Speciation, Sinauer Associates, Sunderland, Mass, USA, 2004.
  63. M. S. Singer, “Evolutionary ecology of polyphagy,” in Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects, K. J. Tilmon, Ed., pp. 29–42, University of California Press, Berkeley, Calif, USA, 2008.
  64. D. J. Funk and P. Nosil, “Comparative analyses of ecological speciation,” in Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects, K. J. Tilmon, Ed., pp. 117–135, University of California Press, Berkeley, Calif, USA, 2008.
  65. J. C. Semple and R. E. Cook, “Solidago,” in Flora of North America, Flora North America Editorial Committee, Ed., pp. 107–166, Oxford University Press, Oxford, UK, 2006.
  66. H. M. Hull-Sanders, R. Clare, R. H. Johnson, and G. A. Meyer, “Evaluation of the evolution of increased competitive ability (EICA) hypothesis: loss of defense against generalist but not specialist herbivores,” Journal of Chemical Ecology, vol. 33, no. 4, pp. 781–799, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. R. H. Johnson, R. Halitschke, and A. Kessler, “Simultaneous analysis of tissue- and genotype-specific variation in Solidago altissima (Asteraceae) rhizome terpenoids, and the polyacetylene dehydromatricaria ester,” Chemoecology, vol. 20, no. 4, pp. 255–264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. G. D. Maddox and R. B. Root, “Structure of the encounter between goldenrod (Solidago altissima) and its diverse insect fauna,” Ecology, vol. 71, no. 6, pp. 2115–2124, 1990. View at Scopus
  69. R. B. Root and N. Cappuccino, “Patterns in population change and the organization of the insect community associated with goldenrod,” Ecological Monographs, vol. 62, no. 3, pp. 393–420, 1992. View at Scopus
  70. E. M. G. Fontes, D. H. Habeck, and F. Slansky Jr., “Phytophagous insects associated with goldenrods (Solidago spp.) in Gainesville, Florida,” Florida Entomologist, vol. 77, no. 2, pp. 209–221, 1994. View at Scopus
  71. C. R. Weaver and D. R. King, “Meadow spittlebug,” Ohio Agricultural Experiment Station Research Bulletin, vol. 741, pp. 1–99, 1954.
  72. R. B. Root and F. J. Messina, “Defensive adaptations and natural enemies of a case-bearing beetle, Exema canadensis (Coleoptera: Chrysomelidae),” Psyche, vol. 90, pp. 67–80, 1983.
  73. W. E. Miller, “Biology and taxonomy of three gall-forming species of Epiblema (Olethreutidae),” Journal of the Lepidopterists' Society, vol. 30, pp. 50–58, 1976.
  74. G. L. Waring , W. G. Abrahamson, and D. J. Howard, “Genetic differentiation among host-associated populations of the gallmaker Eurosta solidaginis (Diptera: Tephritidae),” Evolution, vol. 44, pp. 1648–1655, 1990.
  75. C. P. Blair, W. G. Abrahamson, J. A. Jackman, and L. Tyrrell, “Cryptic speciation and host-race formation in a purportedly generalist tumbling flower beetle,” Evolution, vol. 59, no. 2, pp. 304–316, 2005. View at Scopus
  76. K. D. McCrea and W. G. Abrahamson, “Variation in herbivore infestation: historical vs. genetic factors,” Ecology, vol. 68, no. 4, pp. 822–827, 1987. View at Scopus
  77. G. D. Maddox and R. B. Root, “Resistance to 16 diverse species of herbivorous insects within a population of goldenrod, Solidago altissima: genetic variation and heritability,” Oecologia, vol. 72, no. 1, pp. 8–14, 1987. View at Publisher · View at Google Scholar · View at Scopus
  78. S. B. Heard and G. H. Cox, “Plant module size and attack by the goldenrod spindle-gall moth,” Canadian Entomologist, vol. 141, no. 4, pp. 406–414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. T. P. Craig, J. K. Itami, C. Shantz, W. G. Abrahamson, J. D. Horner, and J. V. Craig, “The influence of host plant variation and intraspecific competition on oviposition preference and offspring performance in the host races of Eurosta solidaginis,” Ecological Entomology, vol. 25, no. 1, pp. 7–18, 2000. View at Publisher · View at Google Scholar · View at Scopus
  80. J. D. Horner and W. G. Abrahamson, “Influence of plant genotype and environment on oviposition preference and offspring survival in a gallmaking herbivore,” Oecologia, vol. 90, no. 3, pp. 323–332, 1992. View at Publisher · View at Google Scholar · View at Scopus
  81. G. D. Maddox and N. Cappuccino, “Genetic determination of plant susceptibility to an herbivorous insect depends on environmental context,” Evolution, vol. 40, pp. 863–866, 1986.
  82. K. Halverson, S. B. Heard, J. D. Nason, and J. O. Stireman, “Differential attack on diploid, tetraploid, and hexaploid Solidago altissima L. by five insect gallmakers,” Oecologia, vol. 154, no. 4, pp. 755–761, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Halverson, S. B. Heard, J. D. Nason, and J. O. Stireman, “Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae),” American Journal of Botany, vol. 95, no. 1, pp. 50–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. N. Moran, “The genus Uroleucon (Homoptera, Aphididae) in Michigan—key, host records, biological notes, and descriptions of 3 new species,” Journal of the Kansas Entomological Society, vol. 57, pp. 596–616, 1984.
  85. S. S. Anderson, K. D. McCrea, W. G. Abrahamson, and L. M. Hartzel, “Host genotype choice by the ball gallmaker Eurosta solidaginis (Diptera: Tephritidae),” Ecology, vol. 70, no. 4, pp. 1048–1054, 1989. View at Scopus
  86. P. W. Price, Macroevolutionary Theory on Macroecological Patterns, Cambridge University Press, Cambridge, UK, 2003.
  87. D. T. Quiring, L. Flaherty, R. Johns, and A. Morrison, “Variable effects of plant module size on abundance and performance of galling insects,” in Galling Arthropods and Their Associates: Ecology and Evolution, K. Ozaki, J. Yukawa, T. Ohgushi, and P. W. Price, Eds., pp. 189–198, Springer, Sapporo, Japan, 2006.
  88. S. B. Heard and C. K. Buchanan, “Larval performance and association within and between two species of hackberry nipple gall insects, Pachypsylla spp. (Homoptera: Psyllidae),” American Midland Naturalist, vol. 140, no. 2, pp. 351–357, 1998. View at Scopus
  89. J. T. Cronin and W. G. Abrahamson, “Goldenrod stem galler preference and performance: effects of multiple herbivores and plant genotypes,” Oecologia, vol. 127, no. 1, pp. 87–96, 2001. View at Publisher · View at Google Scholar · View at Scopus
  90. J. T. Cronin and W. G. Abrahamson, “Host-plant genotype and other herbivores influence goldenrod stem galler preference and performance,” Oecologia, vol. 121, no. 3, pp. 392–404, 1999. View at Publisher · View at Google Scholar · View at Scopus
  91. E. A. Lehnertz, Impacts of herbivory in a goldenrod/insect community: effects of early-season herbivores on host plants and a late-season herbivore, M.S. thesis, University of Iowa, Iowa, Canada, 2001.
  92. D. C. Hartnett and W. G. Abrahamson, “The effects of stem gall insects on life history patterns in Solidago canadensis,” Ecology, vol. 60, pp. 910–917, 1979.
  93. S. B. Heard and E. K. Kitts, “Impact of attack by Gnorimoschema gallmakers on their ancestral and novel Solidago hosts,” Evolutionary Ecology. In press. View at Publisher · View at Google Scholar
  94. P. B. McEvoy, “Niche partitioning in spittlebugs (Homoptera: Cercopidae) sharing shelters on host plants,” Ecology, vol. 67, no. 2, pp. 465–478, 1986. View at Scopus
  95. S. Gripenberg, P. J. Mayhew, M. Parnell, and T. Roslin, “A meta-analysis of preference-performance relationships in phytophagous insects,” Ecology Letters, vol. 13, no. 3, pp. 383–393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. D. Carmona, M. J. Lajeunesse, and M. T. Johnson, “Plant traits that predict resistance to herbivores,” Functional Ecology, vol. 25, no. 2, pp. 358–367, 2011. View at Publisher · View at Google Scholar
  97. N. Janz and S. Nylin, “The oscillation hypothesis of host-plant range and speciation,” in Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects, K. J. Tilmon, Ed., pp. 29–42, University of California Press, Berkeley, Calif, USA, 2008.
  98. J. L. Feder, T. A. Hunt, and L. Bush, “The effects of climate, host plant phenology and host fidelity on the genetics of apple and hawthorn infesting races of Rhagoletis pomonella,” Entomologia Experimentalis et Applicata, vol. 69, no. 2, pp. 117–135, 1993. View at Scopus
  99. H. R. Dambroski and J. L. Feder, “Host plant and latitude-related diapause variation in Rhagoletis pomonella: a test for multifaceted life history adaptation on different stages of diapause development,” Journal of Evolutionary Biology, vol. 20, no. 6, pp. 2101–2112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. J. L. Feder, “The effects of parasitoids on sympatric host races of Rhagoletis pomonella (Diptera: Tephritidae),” Ecology, vol. 76, no. 3, pp. 801–813, 1995. View at Scopus
  101. M. S. Singer, B. Wee , S. Hawkins, and M. Butcher, “Rapid natural and anthropogenic diet evolution: three examples from checkerspot butterflies,” in Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects, K. J. Tilmon, Ed., pp. 311–324, University of California Press, Berkeley, Calif, USA, 2008.
  102. D. J. Funk, “Does strong selection promote host specialisation and ecological speciation in insect herbivores? Evidence from Neochlamisus leaf beetles,” Ecological Entomology, vol. 35, no. 1, pp. 41–53, 2010. View at Publisher · View at Google Scholar · View at Scopus