About this Journal Submit a Manuscript Table of Contents
International Journal of Ecology
Volume 2012 (2012), Article ID 456374, 15 pages
http://dx.doi.org/10.1155/2012/456374
Review Article

Ecological Adaptation and Speciation: The Evolutionary Significance of Habitat Avoidance as a Postzygotic Reproductive Barrier to Gene Flow

1Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
2Department of Biological Sciences, Advanced Diagnostics and Therapeutics, Environmental Change Initiative, University of Notre Dame, Notre Dame, IN 46556, USA
3Department of Biology, University of Iowa, 434A Biology Building, Iowa City, IA 52242, USA

Received 14 August 2011; Accepted 16 November 2011

Academic Editor: Rui Faria

Copyright © 2012 Jeffrey L. Feder et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Feder, C. A. Chilcote, and G. L. Bush, “Genetic differentiation between sympatric host races of the apple maggot fly Rhagoletis pomonella,” Nature, vol. 336, no. 6194, pp. 61–64, 1988. View at Scopus
  2. D. Schluter, “Ecological causes of speciation,” in Endless Forms: Species and Speciation, D. J. Howard and S. H. Berlocher, Eds., pp. 114–129, Oxford University Press, Oxford, UK, 1998.
  3. H. D. Rundle and P. Nosil, “Ecological speciation,” Ecology Letters, vol. 8, no. 3, pp. 336–352, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. Funk, P. Nosil, and W. J. Etges, “Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3209–3213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. P. Hendry, P. Nosil, and L. H. Rieseberg, “The speed of ecological speciation,” Functional Ecology, vol. 21, no. 3, pp. 455–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. G. L. Bush, “Sympatric speciation in animals: new wine in old bottles,” Trends in Ecology and Evolution, vol. 9, no. 8, pp. 285–288, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Via, “Sympatric speciation in animals: the ugly duckling grows up,” Trends in Ecology and Evolution, vol. 16, no. 7, pp. 381–390, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S. H. Berlocher and J. L. Feder, “Sympatric speciation in phytophagous insects: moving beyond controversy?” Annual Review of Entomology, vol. 47, pp. 773–815, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Drès and J. Mallet, “Host races in plant-feeding insects and their importance in sympatric speciation,” Philosophical Transactions of the Royal Society B, vol. 357, no. 1420, pp. 471–492, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. D. I. Bolnick and B. M. Fitzpatrick, “Sympatric speciation: theory and empirical data,” Annual Review of Ecology, Evolution, and Systematics, vol. 38, pp. 459–487, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Schluter, “Evidence for ecological speciation and its alternative,” Science, vol. 323, no. 5915, pp. 737–741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Nosil, “Divergent host plant adaptation and reproductive isolation between ecotypes of Timema cristinae walking sticks,” American Naturalist, vol. 169, no. 2, pp. 151–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Maynard Smith, “Sympatric speciation,” American Naturalist, vol. 100, pp. 637–650, 1966.
  14. J. Felsenstein, “Homage to Santa Rosalia, or why are there so few kinds of animals?” Evolution, vol. 35, pp. 124–138, 1981.
  15. S. R. Diehl and G. L. Bush, “The role of habitat preference in adaptation and speciation,” in Speciation and Its Consequences, D. Otte and J. Endler, Eds., Sinauer Associates, Sunderland, Mass, USA, 1989.
  16. J. D. Fry, “Multilocus models of sympatric speciation: bush versus rice versus felsenstein,” Evolution, vol. 57, no. 8, pp. 1735–1746, 2003. View at Scopus
  17. J. L. Feder and A. A. Forbes, “Habitat avoidance and speciation for phytophagous insect specialists,” Functional Ecology, vol. 21, no. 3, pp. 585–597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Butlin, “A new approach to sympatric speciation,” Trends in Ecology and Evolution, vol. 2, no. 10, pp. 310–311, 1987. View at Scopus
  19. D. J. Futuyma and T. E. Philippi, “Genetic variation and covariation in responses to host plants by Alsophila pometaria ( Lepidoptera: Geometridae),” Evolution, vol. 41, no. 2, pp. 269–279, 1987. View at Scopus
  20. J. D. Fry, “The evolution of host specialization: are trade-offs overrated?” American Naturalist, vol. 148, pp. S84–S107, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Scheirs, K. Jordaens, and L. De Bruyn, “Have genetic trade-offs in host use been overlooked in arthropods?” Evolutionary Ecology, vol. 19, no. 6, pp. 551–561, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. P. R. Grant and B. R. Grant, “Unpredictable evolution in a 30-year study of Darwin's finches,” Science, vol. 296, no. 5568, pp. 707–711, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. T. L. Parchman and C. W. Benkman, “Diversifying coevolution between crossbills and black spruce on Newfoundland,” Evolution, vol. 56, no. 8, pp. 1663–1672, 2002. View at Scopus
  24. C. W. Benkman, “Divergent selection drives the adaptive radiation of crossbills,” Evolution, vol. 57, no. 5, pp. 1176–1181, 2003. View at Scopus
  25. S. P. Carroll and C. Boyd, “Host race radiation in the soapberry bug: natural history with the history,” Evolution, vol. 46, no. 4, pp. 1052–1069, 1992. View at Scopus
  26. J. J. Willacker, F. A. Von Hippel, P. R. Wilton, and K. M. Walton, “Classification of threespine stickleback along the benthic-limnetic axis,” Biological Journal of the Linnean Society, vol. 101, no. 3, pp. 595–608, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. L. Feder and K. E. Filchak, “It's about time: the evidence for host plant-mediated selection in the apple maggot fly, Rhagoletis pomonella, and its implications for fitness trade-offs in phytophagous insects,” Entomologia Experimentalis et Applicata, vol. 91, no. 1, pp. 211–225, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Ramsey, H. D. Bradshaw, and D. W. Schemske, “Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae),” Evolution, vol. 57, no. 7, pp. 1520–1534, 2003. View at Scopus
  29. P. Nosil and B. J. Crespi, “Experimental evidence that predation promotes divergence in adaptive radiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 24, pp. 9090–9095, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Gripenberg, P. J. Mayhew, M. Parnell, and T. Roslin, “A meta-analysis of preference-performance relationships in phytophagous insects,” Ecology Letters, vol. 13, no. 3, pp. 383–393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Mayr, “Ecological factors in speciation,” Evolution, vol. 1, pp. 263–288, 1947.
  32. E. Mayr, Animal Species and Evolution, Harvard University Press, Harvard, Mass, USA, 1963.
  33. E. A. Bernays and R. F. Chapman, “The evolution of deterrent responses in plant feeding insects,” in Perspectives in Chemoreceptors and Behavior, R. F. Chapman, E. A. Bernays, and J. G. Stoffolano, Eds., pp. 159–173, Springer, New York, NY, USA, 1987.
  34. E. A. Bernays, S. Oppenheim, R. F. Chapman, H. Kwon, and F. Gould, “Taste sensitivity of insect herbivores to deterrents is greater in specialists than in generalists: a behavioral test of the hypothesis with two closely related caterpillars,” Journal of Chemical Ecology, vol. 26, no. 2, pp. 547–563, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. E. A. Bernays, “Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation,” Annual Review of Entomology, vol. 46, pp. 703–727, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Castillo-Chavez, S. A. Levin, and F. Gould, “Physiological and behavioral adaptation to varying environments: a mathematical model,” Evolution, vol. 42, no. 5, pp. 986–994, 1988. View at Scopus
  37. M. D. Rausher, “The evolution of habitat preference: avoidance and adaptation,” in Evolution of Insect Pests: Patterns of Variation, K. C. Kim and B. A. McPheron, Eds., pp. 259–283, Wiley, New York, NY, USA, 1993.
  38. N. Janz and S. Nylin, “The role of female search behaviour in determining host plant range in plant feeding insects: a test of the information processing hypothesis,” Proceedings of the Royal Society B, vol. 264, no. 1382, pp. 701–707, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. S. P. Egan and D. J. Funk, “Individual advantages to ecological specialization: insights on cognitive constraints from three conspecific taxa,” Proceedings of the Royal Society B, vol. 273, no. 1588, pp. 843–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. H. D. Rundle and J. W. Boughman, “Behavioral ecology and speciation,” in Evolutionary Behavioral Ecology, D. F. Westneat and C. W. Fox, Eds., Oxford University Press, Oxford, UK, 2010.
  41. J. A. Coyne and H. A. Orr, Speciation, Sinauer Associates, Inc., Sunderland, Mass, USA, 2004.
  42. T. Jermy and A. Szentesi, “The role of inhibitory stimuli in the choice of oviposition site by phytophagous insects,” Entomologia Experimentalis et Applicata, vol. 24, no. 3, pp. 458–471, 1978. View at Publisher · View at Google Scholar · View at Scopus
  43. J. E. Frey and G. L. Bush, “Impaired host odor perception in hybrids between the sibling species Rhagoletis pomonella and R. mendax,” Entomologia Experimentalis et Applicata, vol. 80, no. 1, pp. 163–165, 1996. View at Scopus
  44. W. Bateson, “Heredity and variation in modern lights,” in Darwin and Modern Science, A. C. Seward, Ed., pp. 85–101, Cambridge, UK, Cambridge University Press, 1909.
  45. T. Dobzhansky, Genetics and the Origin of Species, Columbia University Press, New York, NY, USA, 1st edition, 1937.
  46. H. J. Muller, “Bearing of the Drosophila work on systematics,” in The New Systematics, J. Huxley, Ed., pp. 185–268, Oxford, UK, Oxford University Press, 1940.
  47. H. J. Muller, “Isolating mechanisms, evolution, and temerature,” Biology Symposium, vol. 6, pp. 71–125, 1942.
  48. S. Gavrilets, Fitness Landscapes and the Origin of Species, Princeton University Press, Princeton, NJ, USA, 2004.
  49. A. S. Kondrashov, “Accumulation of Dobzhansky-Muller incompatibilities within a spatially structured population,” Evolution, vol. 57, no. 1, pp. 151–153, 2003. View at Scopus
  50. A. F. Agrawal, J. L. Feder, and P. Nosil, “Ecological divergence and the origins of intrinsic postmating isolation with gene flow,” International Journal of Ecology, vol. 2011, Article ID 435357, 15 pages, 2011. View at Publisher · View at Google Scholar
  51. A. R. Templeton, “Mechanisms of speciation—a population genetic approach,” Annual Review of Ecology and Systematics, vol. 12, pp. 32–48, 1981.
  52. S. Nylin and N. Wahlberg, “Does plasticity drive speciation? Host-plant shifts and diversification in nymphaline butterflies (Lepidoptera: Nymphalidae) during the tertiary,” Biological Journal of the Linnean Society, vol. 94, no. 1, pp. 115–130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Janz, S. Nylin, and N. Wahlberg, “Diversity begets diversity: host expansions and the diversification of plant-feeding insects,” BMC Evolutionary Biology, vol. 6, article 4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Weingartner, N. Wahlberg, and S. Nylin, “Dynamics of host plant use and species diversity in Polygonia butterflies (Nymphalidae),” Journal of Evolutionary Biology, vol. 19, no. 2, pp. 483–491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. P. M. Guerin and E. Städler, “Host odour perception in three phytophagous Diptera: a comparative study,” in Proceedings of the 5th International Symposium on Insect-Plant Relationships, pp. 95–106, Pudoc, Wageningen, The Netherlands, 1982.
  56. E. Thibout, J. Auger, and C. Lecomte, “Host plant chemicals responsible for attraction and oviposition in Acrolepiopsis assectella,” in Proceedings of the 5th International Symposium on Insect-Plant Relationships, pp. 107–116, Pudoc, Wageningen, The Netherlands, 1982.
  57. E. Bartlet, M. M. Blight, P. Lane, and I. H. Williams, “The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometer,” Entomologia Experimentalis et Applicata, vol. 85, no. 3, pp. 257–262, 1997. View at Publisher · View at Google Scholar · View at Scopus
  58. J. H. Visser, “Host odor perception in phytophagous insects,” Annual Review of Entomology, vol. 31, pp. 121–144, 1986.
  59. C. R. Roseland, M. B. Bates, R. B. Carlson, and C. Y. Oseto, “Discrimination of sunflower volatiles by the red sunflower seed weevil,” Entomologia Experimentalis et Applicata, vol. 62, no. 2, pp. 99–106, 1992. View at Publisher · View at Google Scholar · View at Scopus
  60. V. Novotny, P. Drozd, S. E. Miller et al., “Why are there so many species of herbivorous insects in tropical rainforests?” Science, vol. 313, no. 5790, pp. 1115–1118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. G. S. Germinara, A. De Cristofaro, and G. Rotundo, “Chemical cues for host location by the chestnut gall wasp, Dryocosmus kuriphilus,” Journal of Chemical Ecology, vol. 37, no. 1, pp. 49–56, 2011. View at Publisher · View at Google Scholar
  62. D. A. Ukeh, M. A. Birkett, T. J. A. Bruce, E. J. Allan, J. A. Pickett, and A. Jennifer Mordue, “Behavioural responses of the maize weevil, Sitophilus zeamais, to host (stored-grain) and non-host plant volatiles,” Pest Management Science, vol. 66, no. 1, pp. 44–50, 2010. View at Publisher · View at Google Scholar
  63. S. F. Nottingham, J. Hardie, G. W. Dawson et al., “Behavioral and electrophysiological responses of Aphids to host and nonhost plant volatiles,” Journal of Chemical Ecology, vol. 17, no. 6, pp. 1231–1242, 1991. View at Publisher · View at Google Scholar
  64. A. A. Forbes, J. Fisher, and J. L. Feder, “Habitat avoidance: overlooking an important aspect of host-specific mating and sympatric speciation?” Evolution, vol. 59, no. 7, pp. 1552–1559, 2005. View at Scopus
  65. C. Linn, S. Nojima, and W. Roelofs, “Antagonist effects of non-host fruit volatiles on discrimination of host fruit by Rhagoletis flies infesting apple (Malus pumila), hawthorn (Crataegus spp.), and flowering dogwood (Cornus florida),” Entomologia Experimentalis et Applicata, vol. 114, no. 2, pp. 97–105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. A. A. Forbes, T. H. Q. Powell, L. L. Stelinski, J. J. Smith, and J. L. Feder, “Sequential sympatric speciation across trophic levels,” Science, vol. 323, no. 5915, pp. 776–779, 2009. View at Publisher · View at Google Scholar
  67. J. A. Byers, Q.-H. Zhang, F. Schlyter, and G. Birgersson, “Volatiles from nonhost birch trees inhibit pheromone response in spruce bark beetles,” Naturwissenschaften, vol. 85, no. 11, pp. 557–561, 1998. View at Publisher · View at Google Scholar
  68. L. M. Schroeder, “Olfactory recognition of nonhosts aspen and birch by conifer bark beetles Tomicus piniperda and Hylurgops palliatus,” Journal of Chemical Ecology, vol. 18, no. 9, pp. 1583–1593, 1992. View at Publisher · View at Google Scholar
  69. F. Schlyter, Q.-H. Zhang, P. Anderson et al., “Electrophysiological and behavioural responses of Tomicus piniperda and Tomicus minor (Coleoptera: Scolytidae) to non-host leaf and bark volatiles,” Canadian Entomologist, vol. 132, no. 6, pp. 965–981, 2000.
  70. A. S. Scott Brown, Interactions of thrips and their control agents on host plants within a glasshouse containing a diverse collection of plant species, PhD dissertation, Birkbeck College, University of London, 2002.
  71. A. Dahanukar, E. A. Hallem, and J. R. Carlson, “Insect chemoreception,” Current Opinion in Neurobiology, vol. 15, no. 4, pp. 423–430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. L. B. Vosshall, A. M. Wong, and R. Axel, “An olfactory sensory map in the fly brain,” Cell, vol. 102, no. 2, pp. 147–159, 2000. View at Scopus
  73. A. A. Dobritsa, W. Van Der Goes Van Naters, C. G. Warr, R. A. Steinbrecht, and J. R. Carlson, “Integrating the molecular and cellular basis of odor coding in the Drosophila antenna,” Neuron, vol. 37, no. 5, pp. 827–841, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Elmore, R. Ignell, J. R. Carlson, and D. P. Smith, “Targeted mutation of a Drosophila odor receptor defines receptor requirement in a novel class of sensillum,” Journal of Neuroscience, vol. 23, no. 30, pp. 9906–9912, 2003. View at Scopus
  75. A. L. Goldman, W. Van Der Goes Van Naters, D. Lessing, C. G. Warr, and J. R. Carlson, “Coexpression of two functional odor receptors in one neuron,” Neuron, vol. 45, no. 5, pp. 661–666, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. H. M. Robertson, C. G. Warr, and J. R. Carlson, “Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 24, pp. 14537–14542, 2003. View at Scopus
  77. E. A. Hallem, M. G. Ho, and J. R. Carlson, “The molecular basis of odor coding in the Drosophila antenna,” Cell, vol. 117, no. 7, pp. 965–979, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. Q. Gao, B. Yuan, and A. Chess, “Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe,” Nature Neuroscience, vol. 3, no. 8, pp. 780–785, 2000. View at Publisher · View at Google Scholar · View at Scopus
  79. R. F. Stocker, “The organization of the chemosensory system in Drosophila melanogaster: a review,” Cell and Tissue Research, vol. 275, no. 1, pp. 3–26, 1994. View at Publisher · View at Google Scholar · View at Scopus
  80. R. F. Stocker, M. C. Lienhard, A. Borst, and K. F. Fischbach, “Neuronal architecture of the antennal lobe in Drosophila melanogaster,” Cell and Tissue Research, vol. 262, no. 1, pp. 9–34, 1990. View at Scopus
  81. L. M. Schoonhoven, T. Jermy, and J. A. A. Van Loon, Insect-Plant Biology, Chapman and Hall, London, UK, 1998.
  82. C. E. Linn, H. R. Dambroski, J. L. Feder, S. H. Berlocher, S. Nojima, and W. L. Roelofs, “Postzygotic isolating factor in sympatric speciation in Rhagoletis flies: reduced response of hybrids to parental host-fruit odors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 51, pp. 17753–17758, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. S. P. Egan, Ecological speciation in Neochlamisus bebbianae leaf beetles: The role of postmating isolation and the genetic basis of host use traits, PhD dissertation, Vanderbilt University, 2010.
  84. E. Campan, A. Couty, Y. Carton, M. H. Pham-Delègue, and L. Kaiser, “Variability and genetic components of innate fruit odour recognition in a parasitoid of Drosophila,” Physiological Entomology, vol. 27, no. 3, pp. 243–250, 2002. View at Publisher · View at Google Scholar
  85. T. Matsuo, S. Sugaya, J. Yasukawa, T. Aigaki, and Y. Fuyama, “Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia,” PLoS Biology, vol. 5, no. 5, article e118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. G. L. Bush, “The taxonomy, cytology, and evolution of the genus Rhagoletis in North America (Diptera, Tephritidae),,” Bulletin of the Museum of Comparative Zoology, vol. 134, pp. 431–562, 1966.
  87. G. L. Bush, “Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera; Tephritidae),” Evolution, vol. 23, pp. 237–251, 1969.
  88. B. A. McPheron, D. C. Smith, and S. H. Berlocher, “Genetic differences between host races of Rhagoletis pomonella,” Nature, vol. 336, no. 6194, pp. 64–66, 1988. View at Scopus
  89. R. J. Prokopy and B. D. Roitberg, “Foraging behavior of true fruit flies,” American Scientist, vol. 72, pp. 41–49, 1984.
  90. C. Linn, J. L. Feder, S. Nojima, H. R. Dambroski, S. H. Berlocher, and W. Roelofs, “Fruit odor discrimination and sympatric host race formation in Rhagoletis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 20, pp. 11490–11493, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. R. J. Prokopy, E. W. Bennett, and G. L. Bush, “Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae)—I. Site of assembly,” Canadian Entomologist, vol. 103, pp. 1405–1409, 1971.
  92. R. J. Prokopy, E. W. Bennett, and G. L. Bush, “Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae)—II. Temporal organization,” Canadian Entomologist, vol. 104, pp. 97–104, 1972.
  93. H. R. Dambroski, C. Linn Jr., S. H. Berlocher, A. A. Forbes, W. Roelofs, and J. L. Feder, “The genetic basis for fruit odor discrimination in Rhagoletis flies and its significance for sympatric host shifts,” Evolution, vol. 59, no. 9, pp. 1953–1964, 2005. View at Scopus
  94. J. L. Feder, T. A. Hunt, and L. Bush, “The effects of climate, host plant phenology and host fidelity on the genetics of apple and hawthorn infesting races of Rhagoletis pomonella,” Entomologia Experimentalis et Applicata, vol. 69, no. 2, pp. 117–135, 1993. View at Scopus
  95. K. E. Filchak, J. B. Roethele, and J. L. Feder, “Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella,” Nature, vol. 407, no. 6805, pp. 739–742, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. S. B. Olsson, C. E. Linn, A. Michel et al., “Receptor expression and sympatric speciation: unique olfactory receptor neuron responses in F1 hybrid Rhagoletis populations,” Journal of Experimental Biology, vol. 209, no. 19, pp. 3729–3741, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. S. B. Olsson, C. E. Linn, J. L. Feder et al., “Comparing peripheral olfactory coding with host preference in the Rhagoletis species complex,” Chemical Senses, vol. 34, no. 1, pp. 37–48, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. A. A. Forbes and J. L. Feder, “Divergent preferences of Rhagoletis pomonella host races for olfactory and visual fruit cues,” Entomologia Experimentalis et Applicata, vol. 119, no. 2, pp. 121–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. S. E. Webster, J. Galindo, J. W. Grahame, and R. K. Butlin, “Habitat choice and speciation,” International Journal of Ecology. In press.