About this Journal Submit a Manuscript Table of Contents
International Journal of Ecology
Volume 2012 (2012), Article ID 653869, 6 pages
http://dx.doi.org/10.1155/2012/653869
Research Article

Response of a Predatory Insect, Chrysopa sinica, toward the Volatiles of Persimmon Trees Infested with the Herbivore, Japanese Wax Scale

College of Life Science, Shanxi University, Taiyuan 030006, China

Received 31 July 2011; Revised 15 December 2011; Accepted 8 February 2012

Academic Editor: Andrew Sih

Copyright © 2012 Yanfeng Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. P. Xie, The scale insects of the forest and fruit trees in Shanxi of China, China Forestry Publishing House, Beijing, China, 1998.
  2. Y. P. Xie and J. L. Xue, “Ultra-morphology and chemical composition of waxes secreted by two wax scale insects, Ceroplastes ceriferus (Fabricius) and C. japonicus Green (Homoptera: Coccidae),” Acta Entomologica Sinica, vol. 48, pp. 837–848, 2005.
  3. R. G. Van Driesche and T. S. Bellows Jr., Biological Control, Chapman and Hall, New York, NY, USA, 1996.
  4. L. E. M. Vet and M. Dicke, “Ecology of infochemical use by natural enemies in a tritrophic context,” Annual Review of Entomology, vol. 37, no. 1, pp. 141–172, 1992. View at Scopus
  5. C. M. DeMoraes, W. J. Lewis, P. W. Pare, H. T. Alborn, and J. H. Tumiinson, “Hervibore-infested plants selectively attract parasitoids,” Nature, vol. 393, no. 6685, pp. 570–573, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Kessler and I. T. Baldwin, “Defensive function of herbivore-induced plant volatile emissions in nature,” Science, vol. 291, no. 5511, pp. 2141–2144, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. T. C. J. Turlings and F. Wäckers, “Recruitment of predators and parasitoids by herbivore-injured plants,” in Advances in Insect Chemical Ecology, R. T. Cardé and J. G. Millar, Eds., pp. 21–75, Cambridge University Press, Cambridge, UK, 2004.
  8. J. G. De Boer, M. A. Posthumus, and M. Dicke, “Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite,” Journal of Chemical Ecology, vol. 30, no. 11, pp. 2215–2230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Y. Han and Z. M. Chen, “Behavior response of four Leis axyridis varieties to volatiles from tea and Toxoptera aurantii,” Chinese Journal of Applied Ecology, vol. 11, no. 3, pp. 413–416, 2000. View at Scopus
  10. B. Y. Han and C. S. Zhou, “Attraction effect of main volatile components from tea shoots and flowers on Sphaerophoria menthastri (Diptera: Syrphidae) and Chrysopa septempunctata (Neuroptera: Chrysopidae),” Chinese Journal of Applied Ecology, vol. 15, no. 4, pp. 623–626, 2004. View at Scopus
  11. T. C. J. Turlings, J. H. Tumlinson, R. R. Heath, A. T. Proveaux, and R. E. Doolittle, “Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts,” Journal of Chemical Ecology, vol. 17, no. 11, pp. 2235–2251, 1991. View at Publisher · View at Google Scholar · View at Scopus
  12. T. C. J. Turlings, J. H. Loughrin, P. J. McCall, U. S. R. Rose, W. J. Lewis, and J. H. Tumlinson, “How caterpillar-damaged plants protect themselves by attracting parasitic wasps,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 10, pp. 4169–4174, 1995. View at Scopus
  13. T. C. J. Turlings and B. Benrey, “Effects of plant metabolites on the behavior and development of parasitic wasps,” Ecoscience, vol. 5, no. 3, pp. 321–333, 1998. View at Scopus
  14. J. D. Allison and J. Daniel Hare, “Learned and naïve natural enemy responses and the interpretation of volatile organic compounds as cues or signals,” New Phytologist, vol. 184, no. 4, pp. 768–782, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Souissi, J. P. Nénon, and B. L. Rü, “Olfactory responses of parasitoid Apoanagyrus lopezi to odor of plants, mealybugs, and plant-mealybug complexes,” Journal of Chemical Ecology, vol. 24, no. 1, pp. 37–48, 1998. View at Scopus
  16. R. Souissi and B. Le Rü, “Behavioural responses of the endoparasitoid Apoanagyrus lopezi to odours of the host and host's cassava plants,” Entomologia Experimentalis et Applicata, vol. 90, no. 2, pp. 215–220, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. T. C. J. Turlings, J. H. Tumlinson, and W. J. Lewis, “Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps,” Science, vol. 250, no. 4985, pp. 1251–1253, 1990. View at Scopus
  18. M. Dicke, P. Van Baarlen, R. Wessels, and H. Dijkman, “Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: Extraction of endogenous elicitor,” Journal of Chemical Ecology, vol. 19, no. 3, pp. 581–599, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. G. Lou, X. Y. Hua, T. C. J. Turlings, J. A. Cheng, X. X. Chen, and G. Y. Ye, “Differences in induced volatile emissions among rice varieties result in differential attraction and parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae in the field,” Journal of Chemical Ecology, vol. 32, no. 11, pp. 2375–2387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Takeshi, J. Takabayashi, W. Ashihara, and A. Takafuji, “Response of predatory insect Scolothips takahashii toward herbivore-induced plant volatiles under laboratory and field condition,” Journal of Chemical Ecology, vol. 23, pp. 2033–2048, 1997.
  21. Y. P. Xie, J. L. Xue, X. Y. Tang, and S. L. Zhao, “The bunge prickly-ash tree damaged by a mealybug, Phenacoccus azaleae attracting the ladybug, Harmonia axyridis,” Scientia Silvae Sinicae, vol. 40, pp. 116–122, 2004.
  22. J. D. Hare, “Ontogeny and Season Constrain the Production of Herbivore-Inducible Plant Volatiles in the Field,” Journal of Chemical Ecology, vol. 36, no. 12, pp. 1363–1374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. T. C. J. Turlings, U. B. Lengwiler, M. L. Bernasconi, and D. Wechsler, “Timing of induced volatile emissions in maize seedlings,” Planta, vol. 207, no. 1, pp. 146–152, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Dicke, R. Gols, D. Ludeking, and M. A. Posthumus, “Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants,” Journal of Chemical Ecology, vol. 25, no. 8, pp. 1907–1922, 1999. View at Scopus
  25. Y. F. Zhang, Y. P. Xie, J. L. Xue, G. L. Peng, and X. Wang, “Effect of volatile emissions, especially α-pinene, from persimmon trees infested by japanese wax scales or treated with methyl jasmonate on recruitment of ladybeetle predators,” Environmental Entomology, vol. 38, no. 5, pp. 1439–1445, 2009. View at Publisher · View at Google Scholar · View at Scopus