About this Journal Submit a Manuscript Table of Contents
International Journal of Ecology
Volume 2012 (2012), Article ID 742913, 10 pages
http://dx.doi.org/10.1155/2012/742913
Research Article

Modelling Marten (Martes americana) Movement Costs in a Boreal Forest: Effects of Grain Size and Thematic Resolution

Centre d'étude de la forêt, Université Laval, Pavillon Abitibi-Price, 2405 rue de la Terrasse, Université Laval, QC, Canada G1V 0A6

Received 24 October 2011; Revised 30 March 2012; Accepted 17 April 2012

Academic Editor: Daniel Rubenstein

Copyright © 2012 Ophélie Planckaert and André Desrochers. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Martin, C. Calenge, P. Y. Quenette, and D. Allainé, “Importance of movement constraints in habitat selection studies,” Ecological Modelling, vol. 213, no. 2, pp. 257–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. R. T. T. Forman and L. E. Alexander, “Roads and their major ecological effects,” Annual Review of Ecology and Systematics, vol. 29, pp. 207–231, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Bélisle, “Measuring landscape connectivity: the challenge of behavioral landscape ecology,” Ecology, vol. 86, no. 8, pp. 1988–1995, 2005. View at Scopus
  4. D. E. Bowler and T. G. Benton, “Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics,” Biological Reviews of the Cambridge Philosophical Society, vol. 80, no. 2, pp. 205–225, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Bélisle and C. C. St. Clair, “Cumulative effects of barriers on the movements of forest birds,” Conservation Ecology, vol. 5, no. 2, 2001.
  6. J. R. Rhodes, C. A. Mcalpine, D. Lunney, and H. P. Possingham, “A spatially explicit habitat selection model incorporating home range behavior,” Ecology, vol. 86, no. 5, pp. 1199–1205, 2005. View at Scopus
  7. F. Adriaensen, J. P. Chardon, G. De Blust et al., “The application of “least-cost” modelling as a functional landscape model,” Landscape and Urban Planning, vol. 64, no. 4, pp. 233–247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. D. H. Douglas, “Least-cost path in GIS using an accumulated cost surface and slopelines,” Cartographica, vol. 31, no. 3, pp. 37–51, 1994. View at Scopus
  9. O. L. Sutcliffe, V. Bakkestuen, G. Fry, and O. E. Stabbetorp, “Modelling the benefits of farmland restoration: methodology and application to butterfly movement,” Landscape and Urban Planning, vol. 63, no. 1, pp. 15–31, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Broquet, N. Ray, E. Petit, J. M. Fryxell, and F. Burel, “Genetic isolation by distance and landscape connectivity in the American marten (Martes americana),” Landscape Ecology, vol. 21, no. 6, pp. 877–889, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Desrochers, M. Bélisle, J. Morand-Ferron, and J. Bourque, “Integrating GIS and homing experiments to study avian movement costs,” Landscape Ecology, vol. 26, no. 1, pp. 47–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. D. Hargis, J. A. Bissonette, and D. L. Turner, “The influence of forest fragmentation and landscape pattern on American martens,” Journal of Applied Ecology, vol. 36, no. 1, pp. 157–172, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Joly, C. Morand, and A. Cohas, “Habitat fragmentation and amphibian conservation: building a tool for assessing landscape matrix connectivity,” Comptes Rendus—Biologies, vol. 326, no. 1, pp. S132–S139, 2003. View at Scopus
  14. S. F. Spear, N. Balkenhol, M. J. Fortin, B. H. McRae, and K. Scribner, “Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis,” Molecular Ecology, vol. 19, no. 17, pp. 3576–3591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. T. N. Wasserman, S. A. Cushman, M. K. Schwartz, and D. O. Wallin, “Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho,” Landscape Ecology, vol. 25, no. 10, pp. 1601–1612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Fahrig, “Non-optimal animal movement in human-altered landscapes,” Functional Ecology, vol. 21, no. 6, pp. 1003–1015, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. E. L. Koen, J. Bowman, C. J. Garroway, S. C. Mills, and P. J. Wilson, “Landscape resistance and American marten gene flow,” Landscape Ecology, vol. 27, no. 1, pp. 29–43, 2012. View at Publisher · View at Google Scholar
  18. J. R. Row, G. Blouin-Demers, and S. C. Lougheed, “Habitat distribution influences dispersal and fine-scale genetic population structure of eastern foxsnakes (Mintonius gloydi) across a fragmented landscape,” Molecular Ecology, vol. 19, no. 23, pp. 5157–5171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. J. Shirk, D. O. Wallin, S. A. Cushman, C. G. Rice, and K. I. Warheit, “Inferring landscape effects on gene flow: a new model selection framework,” Molecular Ecology, vol. 19, no. 17, pp. 3603–3619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Driezen, F. Adriaensen, C. Rondinini, C. P. Doncaster, and E. Matthysen, “Evaluating least-cost model predictions with empirical dispersal data: a case-study using radiotracking data of hedgehogs (Erinaceus europaeus),” Ecological Modelling, vol. 209, no. 2–4, pp. 314–322, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. A. Cushman and J. S. Lewis, “Movement behavior explains genetic differentiation in American black bears,” Landscape Ecology, vol. 25, no. 10, pp. 1613–1625, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Cushman, M. G. Raphael, L. F. Ruggiero, A. S. Shirk, T. N. Wasserman, and E. C. O'Doherty, “Limiting factors and landscape connectivity: the American marten in the Rocky Mountains,” Landscape Ecology, vol. 26, no. 8, pp. 1137–1149, 2011. View at Publisher · View at Google Scholar
  23. S. A. Cushman, M. Chase, and C. Griffin, “Mapping landscape resistance to identify corridors and barriers for elephant movement in Southern Africa,” in Spatial Complexity, Informatics, and Wildlife Conservation, S. A. Cushman and F. Huettmann, Eds., pp. 349–367, Springer, New York, NY, USA, 2010.
  24. Environment Canada, “Canadian Climate Normals, 1971–2000 (Québec),” Canadian Climate Program, Québec., City, 2007.
  25. L. Bélanger, “La forêt mosaïque comme stratégie de conservation de la biodiversité de la sapinière boréale de l'Est: l'expérience de la Forêt Montmorency,” Le Naturaliste Canadien, vol. 125, pp. 18–25, 2001.
  26. J. C. Halfpenny, R. W. Thompson, S. C. Morse, T. Holden, and P. Rezendes, “Snow tracking,” in American Marten, Fisher, Lynx, and Wolverine: Survey Methods for Their Detection (Gen Tech Rep PSW-157), W. J. Zielinski and T. E. Kucera, Eds., chapter 5, USDA Forest Service, Pacific Southwest Research Station, Albany, Calif, USA, 1995.
  27. M. Elbroch, Mammal Tracks and Sign: A Guide to North American Species, Stackpole, Mechanicsburg, Pa, USA, 2003.
  28. E. L. Koen, J. Bowman, and A. A. Walpole, “The effect of cost surface parameterization on landscape resistance estimates,” Molecular Ecology Resources. In press. View at Publisher · View at Google Scholar
  29. F. Potvin, L. Bélanger, and K. Lowell, “Marten habitat selection in a clearcut boreal landscape,” Conservation Biology, vol. 14, no. 3, pp. 844–857, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. É. Alvarez, La forêt mosaïque: une alternative d'aménagement pour le maintien de la martre dans la sapinière boréale? [M.S. thesis], Université Laval, 1996.
  31. S. A. Cushman and E. L. Landguth, “Scale dependent inference in landscape genetics,” Landscape Ecology, vol. 25, no. 6, pp. 967–979, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. J. A. Lee-Yaw, A. Davidson, B. H. McRae, and D. M. Green, “Do landscape processes predict phylogeographic patterns in the wood frog?” Molecular Ecology, vol. 18, no. 9, pp. 1863–1874, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. ESRI, ArcGIS® 9.3., Environmental Systems Research Institute, Inc., Redlands, Calif, USA, 2008.
  34. A. C. Smith and J. A. Schaefer, “Home-range size and habitat selection by American marten (Martes americana) in Labrador,” Canadian Journal of Zoology, vol. 80, no. 9, pp. 1602–1609, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. I. D. Thompson and P. W. Colgan, “Numerical responses of martens to a food shortage in northcentral Ontario,” Journal of Wildlife Management, vol. 51, no. 4, pp. 824–835, 1987. View at Scopus
  36. W. B. Robinson, “Coyote control with compound 1080 stations in national forests,” Journal of Forestry, vol. 51, no. 12, pp. 880–885, 1953.
  37. H. Frouin, Influence des corridors routiers et des coupes sur les déplacements hivernaux de la martre d’Amérique en forêt boréale aménagée [M.S. thesis], Université Laval, 2011.
  38. R. E. Cumberland, J. A. Dempsey, and G. J. Forbes, “Should diet be based on biomass? Importance of larger prey to the American marten,” Wildlife Society Bulletin, vol. 29, no. 4, pp. 1125–1130, 2001. View at Scopus
  39. K. G. Poole and R. P. Graf, “Winter diet of marten during a snowshoe hare decline,” Canadian Journal of Zoology, vol. 74, no. 3, pp. 456–466, 1996. View at Scopus
  40. C. Vigeant-Langlois and A. Desrochers, “Movements of wintering American marten (Martes americana): relative influences of prey activity and forest stand age,” Canadian Journal of Forest Research, vol. 41, no. 11, pp. 2202–2208, 2011. View at Publisher · View at Google Scholar
  41. K. Rothley, “Finding and filling the “cracks” in resistance surfaces for least-cost modeling,” Ecology and Society, vol. 10, no. 1, article 4, 10p.
  42. S. Schadt, F. Knauer, P. Kaczensky, E. Revilla, T. Wiegand, and L. Trepl, “Rule-based assessment of suitable habitat and patch connectivity for the Eurasian lynx,” Ecological Applications, vol. 12, no. 5, pp. 1469–1483, 2002. View at Scopus
  43. R. A. Short Bull, S. A. Cushman, R. MacE et al., “Why replication is important in landscape genetics: American black bear in the Rocky Mountains,” Molecular Ecology, vol. 20, no. 6, pp. 1092–1107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Segelbacher, S. A. Cushman, B. K. Epperson et al., “Applications of landscape genetics in conservation biology: concepts and challenges,” Conservation Genetics, vol. 11, no. 2, pp. 375–385, 2010. View at Publisher · View at Google Scholar · View at Scopus