About this Journal Submit a Manuscript Table of Contents
International Journal of Ecology
Volume 2012 (2012), Article ID 809897, 8 pages
http://dx.doi.org/10.1155/2012/809897
Research Article

Testing the Role of Habitat Isolation among Ecologically Divergent Gall Wasp Populations

1Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
2Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA
3Population and Conservation Biology Program, Department of Biology, Texas State University—San Marcos, San Marcos, TX 78666, USA

Received 17 October 2011; Accepted 9 January 2012

Academic Editor: Marianne Elias

Copyright © 2012 Scott P. Egan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Schluter, The Ecology of Adaptive Radiation, Oxford University Press, Oxford, UK, 2000.
  2. D. Schluter, “Ecology and the origin of species,” Trends in Ecology and Evolution, vol. 16, no. 7, pp. 372–380, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. H. D. Rundle and P. Nosil, “Ecological speciation,” Ecology Letters, vol. 8, no. 3, pp. 336–352, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Mayr, “Ecological factors in speciation,” Evolution, vol. 1, pp. 263–288, 1947.
  5. T. Dobzhansky, Genetics and the Origin of Species, Columbia University Press, New York, NY, USA, 3rd edition, 1951.
  6. G. G. Simpson, The Major Features of Evolution, Columbia University Press, New York, NY, USA, 1953.
  7. D. J. Funk, P. Nosil, and W. J. Etges, “Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3209–3213, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. L. Feder, S. B. Opp, B. Wlazlo, K. Reynolds, W. Go, and S. Spisak, “Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 17, pp. 7990–7994, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Rolán-Alvarez, K. Johannesson, and J. Erlandsson, “The maintenance of a cline in the marine snail Littorina saxatilis: the role of home site advantage and hybrid fitness,” Evolution, vol. 51, no. 6, pp. 1838–1847, 1997. View at Scopus
  10. D. J. Funk, “Isolating a role for natural selection in speciation: host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles,” Evolution, vol. 52, no. 6, pp. 1744–1759, 1998. View at Scopus
  11. H. D. Rundle, L. Nagel, J. W. Boughman, and D. Schluter, “Natural selection and parallel speciation in sympatric sticklebacks,” Science, vol. 287, no. 5451, pp. 306–308, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. R. B. Langerhans, M. E. Gifford, and E. O. Joseph, “Ecological speciation in Gambusia fishes,” Evolution, vol. 61, no. 9, pp. 2056–2074, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. P. Nosil, “Divergent host plant adaptation and reproductive isolation between ecotypes of Timema cristinae walking sticks,” American Naturalist, vol. 169, no. 2, pp. 151–162, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. D. B. Lowry, R. C. Rockwood, and J. H. Willis, “Ecological reproductive isolation of coast and inland races of Mimulus guttatus,” Evolution, vol. 62, no. 9, pp. 2196–2214, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. S. P. Egan, G. R. Hood, J. L. Feder, and J. R. Ott, “Divergent host plant use promotes reproductive isolation among cynipid gall wasp populations,” Biology Letters, in press.
  16. J. A. Coyne and H. A. Orr, Speciation, Sinauer, Sunderland, Mass, USA, 2004.
  17. T. K. Wood and M. C. Keese, “Host-plant-induced assortative mating in Enchenopa treehoppers,” Evolution, vol. 44, no. 3, pp. 619–628, 1990. View at Scopus
  18. L. Nagel and D. Schluter, “Body size, natural selection, and speciation in sticklebacks,” Evolution, vol. 52, no. 1, pp. 209–218, 1998. View at Scopus
  19. P. Nosil and B. J. Crespi, “Ecological divergence promotes the evolution of cryptic reproductive isolation,” Proceedings of the Royal Society of London B, vol. 273, no. 1589, pp. 991–997, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. S. P. Egan and D. J. Funk, “Ecologically dependent postmating isolation between sympatric host forms of Neochlamisus bebbianae leaf beetles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 46, pp. 19426–19431, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. C. S. Mcbride and M. C. Singer, “Field studies reveal strong postmating isolation between ecologically divergent butterfly populations,” PLoS Biology, vol. 8, no. 10, Article ID e1000529, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. S. H. Berlocher and J. L. Feder, “Sympatric speciation in phytophagous insects: moving beyond controversy?” Annual Review of Entomology, vol. 47, pp. 773–815, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. D. J. Funk, K. E. Filchak, and J. L. Feder, “Herbivorous insects: model systems for the comparative study of speciation ecology,” Genetica, vol. 116, no. 2-3, pp. 251–267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. E. A. Bernays and R. F. Chapman, Host–Plant Selection by Phytophagous Insects, Chapman and Hall, London, UK, 1994.
  25. M. C. Singer and C. D. Thomas, “Evolutionary responses of a butterfly metapopulation to human- and climate-caused environmental variation,” American Naturalist, vol. 148, pp. S9–S39, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. S. P. Carroll, H. Dingle, and S. P. Klassen, “Genetic differentiation of fitness-associated traits among rapidly evolving populations of the soapberry bug,” Evolution, vol. 51, no. 4, pp. 1182–1188, 1997. View at Scopus
  27. C. Mitter, B. Farrell, and B. Wiegmann, “The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification?” American Naturalist, vol. 132, no. 1, pp. 107–128, 1988. View at Scopus
  28. B. D. Farrell, “‘Inordinate fondness’ explained: why are there so many beetles?” Science, vol. 281, no. 5376, pp. 555–559, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. B. D. Walsh, “On phytophagic varieties and phytophagic species,” Proceedings of the Entomological Society of Philadelphia, vol. 3, pp. 403–430, 1864.
  30. G. L. Bush, “Sympatric host race formation and speciation in frugivorous flies of genus Rhagoletis (Diptera, Tephritidae),” Evolution, vol. 23, pp. 237–251, 1969.
  31. T. P. Craig, J. D. Horner, and J. K. Itami, “Hybridization studies on the host races of Eurosta solidaginis: implications for sympatric speciation,” Evolution, vol. 51, no. 5, pp. 1552–1560, 1997. View at Scopus
  32. S. Via, “Reproductive isolation between sympatric races of pea aphids. I. Gene flow restriction and habitat choice,” Evolution, vol. 53, no. 5, pp. 1446–1457, 1999. View at Scopus
  33. P. Nosil, C. P. Sandoval, and B. J. Crespi, “The evolution of host preference in allopatric vs. parapatric populations of Timema cristinae walking-sticks,” Journal of Evolutionary Biology, vol. 19, no. 3, pp. 929–942, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. H. Katakura, M. Shioi, and Y. Kira, “Reproductive isolation by host specificity in a pair of phytophagous ladybird beetles,” Evolution, vol. 43, no. 5, pp. 1045–1053, 1989. View at Scopus
  35. C. Linn Jr., J. L. Feder, S. Nojima, H. R. Dambroski, S. H. Berlocher, and W. Roelofs, “Fruit odor discrimination and sympatric host race formation in Rhagoletis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 20, pp. 11490–11493, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. T. P. Craig, J. K. Itami, W. G. Abrahamson, and J. D. Horner, “Behavioral evidence for host-race formation in Eurosta solidaginis,” Evolution, vol. 47, no. 6, pp. 1696–1710, 1993. View at Scopus
  37. J. Cavender-Bares, K. Kitajima, and F. A. Bazzaz, “Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species,” Ecological Monographs, vol. 74, no. 4, pp. 635–662, 2004. View at Scopus
  38. J. Cavender-Bares and A. Pahlich, “Molecular, morphological, and ecological niche differentiation of sympatric sister oak species, Quercus virginiana and Q. geminata (Fagaceae),” American Journal of Botany, vol. 96, no. 9, pp. 1690–1702, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. J. N. Lund, J. R. Ott, and R. J. Lyon, “Heterogony in Belonocnema treatae Mayr (Hymenoptera: Cynipidae),” Proceedings of the Entomological Society of Washington, vol. 100, no. 4, pp. 755–763, 1998. View at Scopus
  40. J. Cavender-Bares, A. Gonzalez-Rodriguez, A. Pahlich, K. Koehler, and N. Deacon, “Phylogeography and climatic niche evolution in live oaks (Quercus series Virentes) from the tropics to the temperate zone,” Journal of Biogeography, vol. 38, no. 5, pp. 962–981, 2011. View at Publisher · View at Google Scholar
  41. T. J. Kawecki and D. Ebert, “Conceptual issues in local adaptation,” Ecology Letters, vol. 7, no. 12, pp. 1225–1241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Edelaar, A. M. Siepielski, and J. Clobert, “Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology,” Evolution, vol. 62, no. 10, pp. 2462–2472, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. D. I. Bolnick, L. K. Snowberg, C. Patenia, W. E. Stutz, T. Ingram, and O. L. Lau, “Phenotype-dependent native habitat preference facilitates divergence between parapatric lake and stream stickleback,” Evolution, vol. 63, no. 8, pp. 2004–2016, 2009. View at Publisher · View at Google Scholar · View at PubMed
  44. W. G. Abrahamson and A. E. Weis, Evolutionary Ecology across Three Trophic Levels: Goldenrods, Gallmakers, and Natural Enemies, Monographs in Population Biology, Princeton University Press, Princeton, NJ, USA, 1997.
  45. J. A. Coyne, S. Elwyn, and E. Rolán-Alvarez, “Impact of experimental design on Drosophila sexual isolation studies: direct effects and comparison to field hybridization data,” Evolution, vol. 59, no. 12, pp. 2588–2601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. C. E. Linn Jr., H. R. Dambroski, J. L. Feder, S. H. Berlocher, S. Nojima, and W. L. Roelofs, “Postzygotic isolating factor in sympatric speciation in Rhagoletis flies: reduced response of hybrids to parental host-fruit odors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 51, pp. 17753–17758, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. H. R. Dambroski, C. Linn, S. H. Berlocher, A. A. Forbes, W. Roelofs, and J. L. Feder, “The genetic basis for fruit odor discrimination in Rhagoletis flies and its significance for sympatric host shifts,” Evolution, vol. 59, no. 9, pp. 1953–1964, 2005. View at Scopus
  48. J. L. Feder, S. P. Egan, and A. A. Forbes, “Ecological adaptation and speciation: the evolutionary significance of habitat avoidance as a postzygotic reproductive barrier to gene flow,” International Journal of Ecology. In press.
  49. H. A. Orr and D. C. Presgraves, “Speciation by postzygotic isolation: forces, genes and molecules,” BioEssays, vol. 22, no. 12, pp. 1085–1094, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Nosil, B. J. Crespi, and C. P. Sandoval, “Host-plant adaptation drives the parallel evolution of reproductive isolation,” Nature, vol. 417, no. 6887, pp. 440–443, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus