About this Journal Submit a Manuscript Table of Contents
International Journal of Ecology
Volume 2013 (2013), Article ID 152139, 9 pages
http://dx.doi.org/10.1155/2013/152139
Research Article

Ant-Related Oviposition and Larval Performance in a Myrmecophilous Lycaenid

1USDA Forest Service, National Forests of Florida, 325 John Knox Road, Suite F-100, Tallahassee, FL 32303, USA
2Florida Museum of Natural History, 3215 Hull Road, Gainesville, FL 32611, USA
3Department of Entomology and Nematology, University of Florida, P.O. Box 110620, Gainesville, FL 32611, USA

Received 27 February 2013; Accepted 29 March 2013

Academic Editor: Mats Olsson

Copyright © 2013 Matthew D. Trager et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. J. Resetarits, “Oviposition site choice and life history evolution1,” American Zoologist, vol. 36, no. 2, pp. 205–215, 1996. View at Scopus
  2. J. Bernardo, “Maternai effects in animal ecology,” American Zoologist, vol. 36, no. 2, pp. 83–105, 1996. View at Scopus
  3. J. F. Rieger, C. A. Binckley, and W. J. Resetarits, “Larval performance and oviposition site preference along a predation gradient,” Ecology, vol. 85, no. 8, pp. 2094–2099, 2004. View at Scopus
  4. K. A. Angelon and J. W. Petranka, “Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition site by Culex mosquitoes,” Journal of Chemical Ecology, vol. 28, no. 4, pp. 797–806, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Ballabeni, M. Wlodarczyk, and M. Rahier, “Does enemy-free space for eggs contribute to a leaf beetle's oviposition preference for a nutritionally inferior host plant?” Functional Ecology, vol. 15, no. 3, pp. 318–324, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. T. H. Oliver, I. Jones, J. M. Cook, and S. R. Leather, “Avoidance responses of an aphidophagous ladybird, Adalia bipunctata, to aphid-tending ants,” Ecological Entomology, vol. 33, no. 4, pp. 523–528, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Morales, “Ant-dependent oviposition in the membracid Publilia concava,” Ecological Entomology, vol. 27, no. 2, pp. 247–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. N. E. Pierce, M. F. Braby, A. Heath et al., “The ecology and evolution of ant association in the Lycaenidae (Lepidoptera),” Annual Review of Entomology, vol. 47, pp. 733–771, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. N. E. Pierce, R. L. Kitching, R. C. Buckley, M. F. J. Taylor, and K. F. Benbow, “The costs and benefits of cooperation between the Australian lycaenid butterfly, Jalmenus evagoras, and its attendant ants,” Behavioral Ecology and Sociobiology, vol. 21, no. 4, pp. 237–248, 1987. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Baylis and N. E. Pierce, “Lack of compensation by final instar larvae of the myrmecophilous lycaenid butterfly, Jalmenus evagoras, for the loss of nutrients to ants,” Physiological Entomology, vol. 17, no. 2, pp. 107–114, 1992. View at Publisher · View at Google Scholar
  11. A. M. Fraser, A. H. Axén, and N. E. Pierce, “Assessing the quality of different ant species as partners of a myrmecophilous butterfly,” Oecologia, vol. 129, no. 3, pp. 452–460, 2001. View at Scopus
  12. J. H. Cushman, V. K. Rashbrook, and A. J. Beattie, “Assessing benefits to both participants in a lycaenid-ant association,” Ecology, vol. 75, no. 4, pp. 1031–1041, 1994. View at Scopus
  13. D. Wagner, “Species-specific effects of tending ants on the development of lycaenid butterfly larvae,” Oecologia, vol. 96, no. 2, pp. 276–281, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Fiedler and B. Hölldobler, “Ants and Polyommatus icarus immatures (Lycaenidae)—sex-related developmental benefits and costs of ant attendance,” Oecologia, vol. 91, no. 4, pp. 468–473, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. L. A. Kaminski and D. Rodrigues, “Species-specific levels of ant attendance mediate performance costs in a facultative myrmecophilous butterfly,” Physiological Entomology, vol. 36, no. 3, pp. 208–214, 2011. View at Publisher · View at Google Scholar
  16. K. Fiedler and C. Saam, “Does ant-attendance influence development in 5 European Lycaenidae butterfly species? (Lepidoptera),” Nota Lepidopterologica, vol. 17, no. 1-2, pp. 5–24, 1994.
  17. L. Rowe and D. Ludwig, “Size and timing of metamorphosis in complex life cycles: time constraints and variation,” Ecology, vol. 72, no. 2, pp. 413–427, 1991. View at Scopus
  18. K. Gotthard, “Adaptive growth decisions in butterflies,” BioScience, vol. 58, no. 3, pp. 222–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Schluter, T. D. Price, and L. Rowe, “Conflicting selection pressures and life history trade-offs,” Proceedings of the Royal Society B: Biological Sciences, vol. 246, no. 1315, pp. 11–17, 1991. View at Scopus
  20. P. A. Abrams, O. Leimar, S. Nylin, and C. Wiklund, “The effect of flexible growth rates on optimal sizes and development times in a seasonal environment,” American Naturalist, vol. 147, no. 3, pp. 381–395, 1996. View at Scopus
  21. E. A. Bernays, “Feeding by lepidopteran larvae is dangerous,” Ecological Entomology, vol. 22, no. 1, pp. 121–123, 1997. View at Scopus
  22. W. U. Blanckenhorn, “The quarterly review of biology: the evolution of body size: what keeps organisms small?” Quarterly Review of Biology, vol. 75, no. 4, pp. 385–407, 2000. View at Scopus
  23. W. U. Blanckenhorn, “Adaptive phenotypic plasticity in growth, development, and body size in the yellow dung fly,” Evolution, vol. 52, no. 5, pp. 1394–1407, 1998. View at Scopus
  24. B. J. Danner and A. Joern, “Stage-specific behavioral responses of Ageneotettix deorum (Orthoptera: Acrididae) in the presence of lycosid spider predators,” Journal of Insect Behavior, vol. 16, no. 4, pp. 453–464, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Gotthard, “Increased risk of predation as a cost of high growth rate: an experimental test in a butterfly,” Journal of Animal Ecology, vol. 69, no. 5, pp. 896–902, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Nylin and K. Gotthard, “Plasticity in life-history traits,” Annual Review of Entomology, vol. 43, pp. 63–83, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. P. R. Atsatt, “Lycaenid butterflies and ants—selection for enemy-free space,” American Naturalist, vol. 118, no. 5, pp. 638–654, 1981. View at Publisher · View at Google Scholar
  28. N. E. Pierce and M. A. Elgar, “The influence of ants on host plant selection by Jalmenus evagoras, a myrmecophilous lycaenid butterfly,” Behavioral Ecology and Sociobiology, vol. 16, no. 3, pp. 209–222, 1985. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Seufert and K. Fiedler, “The influence of ants on patterns of colonization and establishment within a set of coexisting lycaenid butterflies in a south-east Asian tropical rain forest,” Oecologia, vol. 106, no. 1, pp. 127–136, 1996. View at Scopus
  30. A. M. Fraser, T. Tregenza, N. Wedell, M. A. Elgar, and N. E. Pierce, “Oviposition tests of ant preference in a myrmecophilous butterfly,” Journal of Evolutionary Biology, vol. 15, no. 5, pp. 861–870, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. P. R. Atsatt, “Ant-dependent food plant selection by the mistletoe butterfly Ogyris amaryllis (Lycaenidae),” Oecologia, vol. 48, no. 1, pp. 60–63, 1981. View at Publisher · View at Google Scholar · View at Scopus
  32. A. L. Ward and D. J. Rogers, “Oviposition response of scarabaeids: does 'mother knows best' about rainfall variability and soil moisture?” Physiological Entomology, vol. 32, no. 4, pp. 357–366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. Davis and J. A. Stamps, “The effect of natal experience on habitat preferences,” Trends in Ecology and Evolution, vol. 19, no. 8, pp. 411–416, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. S. S. Liu, Y. H. Li, Y. Q. Liu, and M. P. Zalucki, “Experience-induced preference for oviposition repellents derived from a non-host plant by a specialist herbivore,” Ecology Letters, vol. 8, no. 7, pp. 722–729, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Caubet, P. Jaisson, and A. Lenoir, “Preimaginal induction of adult behavior in insects,” Quarterly Journal of Experimental Psychology Section B-Comparative and Physiological Psychology, vol. 44, no. 3-4, pp. 165–178, 1992.
  36. H. Sadeghi and F. Gilbert, “Oviposition preferences of aphidophagous hoverflies,” Ecological Entomology, vol. 25, no. 1, pp. 91–100, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. E. V. Saarinen and J. C. Daniels, “Miami blue butterfly larvae (Lepidoptera: Lycaenidae) and ants (Hymeoptera: Formicidae): new information on the symbionts of an endangered taxon,” Florida Entomologist, vol. 89, no. 1, pp. 69–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. D. Trager and J. C. Daniels, “Ant tending of Miami blue butterfly larvae (Lepidoptera: Lycaenidae): partner diversity and effects on larval performance,” Florida Entomologist, vol. 92, no. 3, pp. 474–482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. D. Trager and J. C. Daniels, “Size effects on mating and egg production in the Miami blue butterfly,” Journal of Insect Behavior, vol. 24, no. 1, pp. 34–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. Florida Fish and Wildlife Conservation Commission, “Management plan: Miami blue Cyclargus (=Hemiargus) thomasi bethunebakeri,” 2003.
  41. S. P. Carroll and J. Loye, “Invasion, colonization, and disturbance; historical ecology of the endangered Miami blue butterfly,” Journal of Insect Conservation, vol. 10, no. 1, pp. 13–27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. R Development Core Team, R: A Language and Environment for Statistical Computing, vol. 2, R Foundation for Statistical Computing, 2011.
  43. T. A. Waite and L. G. Campbell, “Controlling the false discovery rate and increasing statistical power in ecological studies,” Ecoscience, vol. 13, no. 4, pp. 439–442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. J. L. Bronstein, “The costs of mutualism,” American Zoologist, vol. 41, no. 4, pp. 825–839, 2001. View at Scopus
  45. B. Stadler, K. Fiedler, T. J. Kawecki, and W. W. Weisser, “Costs and benefits for phytophagous myrmecophiles: when ants are not always available,” Oikos, vol. 92, no. 3, pp. 467–478, 2001. View at Scopus
  46. K. H. Keeler, “A model of selection for facultative non-symbiotic mutualism,” American Naturalist, vol. 118, no. 4, pp. 488–498, 1981. View at Publisher · View at Google Scholar
  47. D. Wagner and C. Martínez del Rio, “Experimental tests of the mechanism for ant-enhanced growth in an ant-tended lycaenid butterfly,” Oecologia, vol. 112, no. 3, pp. 424–429, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Uhl, S. Schmitt, M. A. Schäfer, and W. Blanckenhorn, “Food and sex-specific growth strategies in a spider,” Evolutionary Ecology Research, vol. 6, no. 4, pp. 523–540, 2004. View at Scopus
  49. N. Collier, “Identifying potential evolutionary relationships within a facultative lycaenid-ant system: ant association, oviposition, and butterfly-ant conflict,” Insect Science, vol. 14, no. 5, pp. 401–409, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Fiedler and U. Maschwitz, “The symbiosis between the weaver ant, Oecophylla smaragdina, and Anthene emolus, an obligate myrmecophilous lycaenid butterfly,” Journal of Natural History, vol. 23, no. 4, pp. 833–846, 1989. View at Scopus
  51. A. B. Barron, “The life and death of Hopkins' host-selection principle,” Journal of Insect Behavior, vol. 14, no. 6, pp. 725–737, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Janz, L. Söderlind, and S. Nylin, “No effect of larval experience on adult host preferences in Polygonia c-album (Lepidoptera: Nymphalidae): on the persistence of Hopkins' host selection principle,” Ecological Entomology, vol. 34, no. 1, pp. 50–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Ray, “Survival of olfactory memory through metamorphosis in the fly Musca domestica,” Neuroscience Letters, vol. 259, no. 1, pp. 37–40, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Akhtar and M. B. Isman, “Larval exposure to oviposition deterrents alters subsequent oviposition behavior in generalist, Trichoplusia ni and specialist, Plutella xylostella moths,” Journal of Chemical Ecology, vol. 29, no. 8, pp. 1853–1870, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Baylis and N. E. Pierce, “The effect of host-plant quality on the survival of larvae and oviposition by adults of an ant-tended lycaenid butterfly, Jalmenus evagoras,” Ecological Entomology, vol. 16, no. 1, pp. 1–9, 1991. View at Scopus
  56. D. Jordano, J. Rodríguez, C. D. Thomas, and J. Fernández Haeger, “The distribution and density of a lycaenid butterfly in relation to Lasius ants,” Oecologia, vol. 91, no. 3, pp. 439–446, 1992. View at Publisher · View at Google Scholar · View at Scopus
  57. S. F. Henning, “Biological groups within the Lycaenidae (Lepidoptera),” Journal of the Entomological Society of Southern Africa, vol. 46, no. 1, pp. 65–85, 1983.
  58. A. S. Seymour, D. Gutiérrez, and D. Jordano, “Dispersal of the lycaenid Plebejus argus in response to patches of its mutualist ant Lasius niger,” Oikos, vol. 103, no. 1, pp. 162–174, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Wagner and L. Kurina, “The influence of ants and water availability on oviposition behaviour and survivorship of a facultatively ant-tended herbivore,” Ecological Entomology, vol. 22, no. 3, pp. 352–360, 1997. View at Scopus
  60. M. Musche, C. Anton, A. Worgan, and J. Settele, “No experimental evidence for host ant related oviposition in a parasitic butterfly,” Journal of Insect Behavior, vol. 19, no. 5, pp. 631–643, 2006. View at Publisher · View at Google Scholar · View at Scopus