About this Journal Submit a Manuscript Table of Contents
International Journal of Ecology
Volume 2013 (2013), Article ID 237457, 12 pages
http://dx.doi.org/10.1155/2013/237457
Research Article

Flower Density Is More Important Than Habitat Type for Increasing Flower Visiting Insect Diversity

School of Biology, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Received 28 February 2013; Revised 6 May 2013; Accepted 8 May 2013

Academic Editor: J. J. Wiens

Copyright © 2013 L. A. Scriven et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. E. Sala, F. S. Chapin, J. J. Armesto et al., “Global biodiversity scenarios for the year 2100,” Science, vol. 287, no. 5459, pp. 1770–1774, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Krauss, R. Bommarco, M. Guardiola et al., “Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels,” Ecology Letters, vol. 13, no. 5, pp. 597–605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. B. S. Law and C. R. Dickman, “The use of habitat mosaics by terrestrial vertebrate fauna: implications for conservation and management,” Biodiversity and Conservation, vol. 7, no. 3, pp. 323–333, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. S. D. Wratten, M. Gillespie, A. Decourtye, E. Mader, and N. Desneux, “Pollinator habitat enhancement: benefits to other ecosystem services,” Agriculture, Ecosystems & Environment, vol. 159, pp. 112–122, 2012.
  5. J. Feehan, D. A. Gillmor, and N. Culleton, “Effects of an agri-environment scheme on farmland biodiversity in Ireland,” Agriculture, Ecosystems and Environment, vol. 107, no. 2-3, pp. 275–286, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. Whittingham, “Will agri-environment schemes deliver substantial biodiversity gain, and if not why not?” Journal of Applied Ecology, vol. 44, no. 1, pp. 1–5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. E. Kenward, M. J. Whittingham, S. Arampatzis, et al., “Identifying governance strategies that effectively support ecosystem services, resource sustainability, and biodiversity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 13, pp. 5308–5312, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. K. J. Gaston, R. M. Smith, K. Thompson, and P. H. Warren, “Urban domestic gardens (II): experimental tests of methods for increasing biodiversity,” Biodiversity and Conservation, vol. 14, no. 2, pp. 395–413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Goddard, A. J. Dougill, and T. G. Benton, “Scaling up from gardens: biodiversity conservation in urban environments,” Trends in Ecology and Evolution, vol. 25, no. 2, pp. 90–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. W. F. Cameron, T. Blanuša, J. E. Taylor, et al., “The domestic garden—its contribution to urban green infrastructure,” Urban Forestry & Urban Greening, vol. 11, pp. 129–137, 2012.
  11. T. G. Benton, J. A. Vickery, and J. D. Wilson, “Farmland biodiversity: is habitat heterogeneity the key?” Trends in Ecology and Evolution, vol. 18, no. 4, pp. 182–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Tscharntke, I. Steffan-Dewenter, A. Kruess, and C. Thies, “Characteristics of insect populations on habitat fragments: a mini review,” Ecological Research, vol. 17, no. 2, pp. 229–239, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. W. E. Kunin, “Sample shape, spatial scale and species counts: implications for reserve design,” Biological Conservation, vol. 82, no. 3, pp. 369–377, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. S. G. Potts, B. Vulliamy, A. Dafni, G. Ne'eman, and P. Willmer, “Linking bees and flowers: how do floral communities structure pollinator communities?” Ecology, vol. 84, no. 10, pp. 2628–2642, 2003. View at Scopus
  15. J. Ghazoul, “Floral diversity and the facilitation of pollination,” Journal of Ecology, vol. 94, no. 2, pp. 295–304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. S. Wilson, T. Griswold, and O. J. Messinger, “Sampling bee communities (Hymenoptera: Apiformes) in a desert landscape: are pan traps sufficient?” Journal of the Kansas Entomological Society, vol. 81, no. 3, pp. 288–300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Moroń, H. Szentgyörgyi, M. Wantuch et al., “Diversity of wild bees in wet meadows: implications for conservation,” Wetlands, vol. 28, no. 4, pp. 975–983, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Westphal, R. Bommarco, G. Carré et al., “Measuring bee diversity in different European habitats and biogeographical regions,” Ecological Monographs, vol. 78, no. 4, pp. 653–671, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. B. M. H. Larson, P. G. Kevan, and D. W. Inouye, “Flies and flowers: taxonomic diversity of anthophiles and pollinators,” Canadian Entomologist, vol. 133, no. 4, pp. 439–465, 2001. View at Scopus
  20. S. Vrdoljak and M. Samways, “Optimising coloured pan traps to survey flower visiting insects,” Journal of Insect Conservation, vol. 16, pp. 345–354, 2012.
  21. O. E. Prys-Jones and S. A. Corbet, Bumblebees, Cambridge University Press, Cambridge, UK, 1991.
  22. E. Pollard and T. J. Yates, Monitoring Butterflies for Ecology and Conservation: The British Butterfly Monitoring Scheme, Chapman & Hall, London, UK, 1993.
  23. R. C. Team, “R: a language and environment for statistical computing,” in Computing RFfS, Vienna, Austria, 2012.
  24. S. Dray and A. B. Dufour, “The ade4 package: implementing the duality diagram for ecologists,” Journal of Statistical Software, vol. 22, no. 4, pp. 1–20, 2007. View at Scopus
  25. K. R. Clarke, “Non-parametric multivariate analyses of changes in community structure,” Australian Journal of Ecology, vol. 18, no. 1, pp. 117–143, 1993. View at Scopus
  26. K. Clarke and R. Warwick, Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, PRIMER-E, Plymouth, UK, 2001.
  27. M. A. Molina-Montenegro, E. I. Badano, and L. A. Cavieres, “Positive interactions among plant species for pollinator service: assessing the “magnet species” concept with invasive species,” Oikos, vol. 117, no. 12, pp. 1833–1839, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Fründ, K. E. Linsenmair, and N. Blüthgen, “Pollinator diversity and specialization in relation to flower diversity,” Oikos, vol. 119, no. 10, pp. 1581–1590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Stang, P. G. L. Klinkhamer, and E. Van Der Meijden, “Size constraints and flower abundance determine the number of interactions in a plant-flower visitor web,” Oikos, vol. 112, no. 1, pp. 111–121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Comba, S. A. Corbet, L. Hunt, and B. Warren, “Flowers, nectar and insect visits: evaluating British plant species for pollinator-friendly gardens,” Annals of Botany, vol. 83, no. 4, pp. 369–383, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Jermy, F. E. Hanson, and V. G. Dethier, “Induction of specific food preference in lepidopterous larvae,” Entomologia Experimentalis et Applicata, vol. 11, no. 2, pp. 211–230, 1968. View at Publisher · View at Google Scholar · View at Scopus
  32. J. H. Lawton, “Plant architecture and the diversity of phytophagous insects,” Annual Review of Entomology, vol. 28, pp. 23–39, 1983. View at Scopus
  33. N. M. Haddad, D. Tilman, J. Haarstad, M. Ritchie, and J. M. H. Knops, “Contrasting effects of plant richness and composition on insect communities: a field experiment,” American Naturalist, vol. 158, no. 1, pp. 17–35, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. S. G. Potts, B. A. Woodcock, S. P. M. Roberts et al., “Enhancing pollinator biodiversity in intensive grasslands,” Journal of Applied Ecology, vol. 46, no. 2, pp. 369–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Albrecht, B. Schmid, Y. Hautier, and C. B. Muller, “Diverse pollinator communities enhance plant reproductive success,” Proceedings of the Royal Society B, vol. 279, pp. 4845–4852, 2012.
  36. C. McCall and R. B. Primack, “Influence of flower characteristics, weather, time of day, and season on insect visitation rates in three plant communities,” American Journal of Botany, vol. 79, no. 4, pp. 434–442, 1992. View at Scopus
  37. M. W. Brown and J. J. Schmitt, “Seasonal and diurnal dynamics of beneficial insect populations in apple orchards under different management intensity,” Environmental Entomology, vol. 30, no. 2, pp. 415–424, 2001. View at Scopus
  38. J. H. Cane, R. L. Minckley, and L. J. Kervin, “Sampling bees (Hymenoptera: Apiformes) for pollinator community studies: pitfalls of pan-trapping,” Journal of the Kansas Entomological Society, vol. 73, no. 4, pp. 225–231, 2000. View at Scopus
  39. F. S. Gilbert, “Foraging ecology of hoverflies: morphology of the mouthparts in relation to feeding on nectar and pollen in some common urban species,” Ecological Entomology, vol. 6, pp. 245–262, 1981.
  40. A. Stubbs and S. Faulks, British Hoverflies: An Illustrated Identification Guide: British Entomological and Natural History Society, 2002.
  41. E. Gaujour, B. Amiaud, C. Mignolet, and S. Plantureux, “Factors and processes affecting plant biodiversity in permanent grasslands. A review,” Agronomy for Sustainable Development, vol. 32, pp. 133–160, 2011.
  42. A. López-Mariño, E. Luis-Calabuig, F. Fillat, and F. F. Bermúdez, “Floristic composition of established vegetation and the soil seed bank in pasture communities under different traditional management regimes,” Agriculture, Ecosystems and Environment, vol. 78, no. 3, pp. 273–282, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. A. R. Kells and D. Goulson, “Preferred nesting sites of bumblebee queens (Hymenoptera: Apidae) in agroecosystems in the UK,” Biological Conservation, vol. 109, no. 2, pp. 165–174, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Westrich, “Habitat requirements of central European bees and the problems of partial habitats,” in The Conservation of Bees, A. Matheson, S. L. Buchmann, C. O’Toole, P. Westrich, and I. H. Williams, Eds., pp. 1–16, Academic Press for the Linnean Society of London and IBRA, London, UK, 1996.
  45. R. Winfree, “The conservation and restoration of wild bees,” Annals of the New York Academy of Sciences, vol. 1195, pp. 169–197, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. R. F. Pywell, W. R. Meek, L. Hulmes, et al., “Management to enhance pollen and nectar resources for bumblebees and butterflies within intensively farmed landscapes,” Journal of Insect Conservation, vol. 15, no. 6, pp. 853–864, 2011.