About this Journal Submit a Manuscript Table of Contents
International Journal of Ecology
Volume 2014 (2014), Article ID 389409, 10 pages
http://dx.doi.org/10.1155/2014/389409
Research Article

Are Commonly Measured Functional Traits Involved in Tropical Tree Responses to Climate?

1Remote Sensing Division, National Institute for Space Research (INPE), 12227-010 São José dos Campos, SP, Brazil
2CIRAD, UMR Ecologie des Forêts de Guyane, 97379 Kourou, France
3Université de Yaoundé 1, UMI 209 Modélisation Mathématique et Informatique de Systèmes Complexes, BP337 Yaoundé, Cameroon
4INRA, UMR Ecologie des Forêts de Guyane, 97379 Kourou, France
5INRA, UMR INRA-UHP 1137 Ecologie et Ecophysiologie Forestière, 54280 Champenoux, France
6CIRAD, UMR Systèmes d’Elevage en Milieux Méditerranéens et Tropicaux, 97379 Kourou, France

Received 7 March 2014; Revised 30 May 2014; Accepted 30 May 2014; Published 25 June 2014

Academic Editor: Pavlos Kassomenos

Copyright © 2014 Fabien Wagner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. B. Clark, D. A. Clark, and S. F. Oberbauer, “Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2,” Global Change Biology, vol. 16, no. 2, pp. 747–759, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. D. A. Clark, “Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 359, no. 1443, pp. 477–491, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. N. McDowell, W. T. Pockman, C. D. Allen et al., “Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?” New Phytologist, vol. 178, no. 4, pp. 719–739, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Malhi and J. Wright, “Spatial patterns and recent trends in the climate of tropical rainforest regions,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 359, no. 1443, pp. 311–329, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Malhi, L. E. O. C. Aragao, D. Galbraith et al., “Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 49, pp. 20610–20615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. J. Burke, S. J. Brown, and N. Christidis, “Modelling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model,” Journal of Hydrometeorology, vol. 7, no. 5, pp. 1113–1125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. T. C. Johns, J. M. Gregory, W. J. Ingram et al., “Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios,” Climate Dynamics, vol. 20, no. 6, pp. 583–612, 2003. View at Scopus
  8. P. M. Brando, D. C. Nepstad, E. A. Davidson, S. E. Trumbore, D. Ray, and P. Camargo, “Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 363, no. 1498, pp. 1839–1848, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Lloyd and G. D. Farquhar, “Effects of rising temperatures and [CO2] on the physiology of tropical forest trees,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 363, no. 1498, pp. 1811–1817, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Wagner, V. Rossi, C. Stahl, D. Bonal, and B. Herault, “Water availability is the main climate driver of neotropical tree growth,” PLoS ONE, vol. 7, no. 4, Article ID e34074, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Diaz, J. G. Hodgson, K. Thompson et al., “The plant traits that drive ecosystems: evidence from three continents,” Journal of Vegetation Science, vol. 15, no. 3, pp. 295–304, 2004. View at Scopus
  12. S. Lavorel and E. Garnier, “Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail,” Functional Ecology, vol. 16, no. 5, pp. 545–556, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Herault, B. Bachelot, L. Poorter et al., “Functional traits shape ontogenetic growth trajectories of rain forest tree species,” Journal of Ecology, vol. 99, no. 6, pp. 1431–1440, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Westoby, “A leaf-height-seed (LHS) plant ecology strategy scheme,” Plant and Soil, vol. 199, no. 2, pp. 213–227, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Westoby, D. S. Falster, A. T. Moles, P. A. Vesk, and I. J. Wright, “Plant ecological strategies: some leading dimensions of variation between species,” Annual Review of Ecology and Systematics, vol. 33, pp. 125–159, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. I. J. Wright, P. B. Reich, M. Westoby et al., “The worldwide leaf economics spectrum,” Nature, vol. 428, no. 6985, pp. 821–827, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. L. D. Osnas, J. W. Lichstein, P. B. Reich, and S. W. Pacala, “Global leaf trait relationships: mass, area, and the leaf economics spectrum,” Science, vol. 340, no. 6133, pp. 741–744, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Hirose and M. J. A. Werger, “Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy,” Oecologia, vol. 72, no. 4, pp. 520–526, 1987. View at Publisher · View at Google Scholar · View at Scopus
  19. A. T. Moles, D. S. Falster, M. R. Leishman, and M. Westoby, “Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime,” Journal of Ecology, vol. 92, no. 3, pp. 384–396, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Baraloto, C. E. T. Paine, L. Poorter et al., “Decoupled leaf and stem economics in rain forest trees,” Ecology Letters, vol. 13, no. 11, pp. 1338–1347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. J. Wright, K. Kitajima, N. J. B. Kraft et al., “Functional traits and the growth-mortality trade-off in tropical trees,” Ecology, vol. 91, no. 12, pp. 3664–3674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Herault, J. Ouallet, L. Blanc, F. Wagner, and C. Baraloto, “Growth responses of neotropical trees to logging gaps,” Journal of Applied Ecology, vol. 47, no. 4, pp. 821–831, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Poorter, S. J. Wright, H. Paz et al., “Are functional traits good predictors of demographic rates? Evidence from five neotropical forests,” Ecology, vol. 89, no. 7, pp. 1908–1920, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Granier, R. Hue, and S. T. Barigah, “Transpiration of natural rain forest and its dependence on climatic factors,” Agricultural and Forest Meteorology, vol. 78, no. 1-2, pp. 19–29, 1996. View at Scopus
  25. D. C. Nepstad, I. M. Tohver, R. David, P. Moutinho, and G. Cardinot, “Mortality of large trees and lianas following experimental drought in an amazon forest,” Ecology, vol. 88, no. 9, pp. 2259–2269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Monserud, “Simulation of forest tree mortality,” Forest Science, vol. 22, pp. 438–444, 1976.
  27. P. H. Wyckoff and J. S. Clark, “The relationship between growth and mortality for seven co-occurring tree species in the southern Appalachian Mountains,” Journal of Ecology, vol. 90, no. 4, pp. 604–615, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Poorter and F. Bongers, “Leaf traits are good predictors of plant performance across 53 rain forest species,” Ecology, vol. 87, no. 7, pp. 1733–1743, 2006. View at Scopus
  29. C. E. T. Paine, C. Stahl, E. A. Courtois, S. Patino, C. Sarmiento, and C. Baraloto, “Functional explanations for variation in bark thickness in tropical rain forest trees,” Functional Ecology, vol. 24, no. 6, pp. 1202–1210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. T. R. Baker, D. F. R. P. Burslem, and M. D. Swaine, “Associations between tree growth, soil fertility and water availability at local and regional scales in Ghanaian tropical rain forest,” Journal of Tropical Ecology, vol. 19, no. 2, pp. 109–125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Stahl, B. Burban, F. Bompy, Z. B. Jolin, J. Sermage, and D. Bonal, “Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana,” Journal of Tropical Ecology, vol. 26, no. 4, pp. 393–405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. L. S. Santiago, G. Goldstein, F. C. Meinzer et al., “Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees,” Oecologia, vol. 140, no. 4, pp. 543–550, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Chave, D. Coomes, S. Jansen, S. L. Lewis, N. G. Swenson, and A. E. Zanne, “Towards a worldwide wood economics spectrum,” Ecology Letters, vol. 12, no. 4, pp. 351–366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Markesteijn, L. Poorter, H. Paz, L. Sack, and F. Bongers, “Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits,” Plant, Cell and Environment, vol. 34, no. 1, pp. 137–148, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Poorter, U. Niinemets, L. Poorter, I. J. Wright, and R. Villar, “Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis,” New Phytologist, vol. 182, no. 3, pp. 565–588, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. F. J. Sterck and F. Bongers, “Crown development in tropical rain forest trees: patterns with tree height and light availability,” Journal of Ecology, vol. 89, no. 1, pp. 1–13, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. N. M. Fyllas, S. Patino, T. R. Baker et al., “Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate,” Biogeosciences, vol. 6, no. 11, pp. 2677–2708, 2009. View at Scopus
  38. J. H. C. Cornelissen, S. Lavorel, E. Garnier et al., “A handbook of protocols for standardised and easy measurement of plant functional traits worldwide,” Australian Journal of Botany, vol. 51, no. 4, pp. 335–380, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. L. A. Donovan, H. Maherali, C. M. Caruso, H. Huber, and H. de Kroon, “The evolution of the worldwide leaf economics spectrum,” Trends in Ecology and Evolution, vol. 26, no. 2, pp. 88–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. M. R. G. Roelfsema and R. Hedrich, “In the light of stomatal opening: new insights into 'the Watergate',” New Phytologist, vol. 167, no. 3, pp. 665–691, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Marschner, Mineral Nutrition in Higher Plants, Academic Press, London, UK, 1986.
  42. L. S. Santiago and S. J. Wright, “Leaf functional traits of tropical forest plants in relation to growth form,” Functional Ecology, vol. 21, no. 1, pp. 19–27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Farquhar, J. Ehleringer, and K. Hubick, “Carbon isotope discrimination and photosynthesis,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 40, pp. 503–537, 1989. View at Publisher · View at Google Scholar
  44. I. C. Prentice, T. Meng, H. Wang, S. P. Harrison, J. Ni, and G. Wang, “Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient,” New Phytologist, vol. 190, no. 1, pp. 169–180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. S. M. McMahon, S. P. Harrison, W. S. Armbruster et al., “Improving assessment and modelling of climate change impacts on global terrestrial biodiversity,” Trends in Ecology and Evolution, vol. 26, no. 5, pp. 249–259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. B. B. Lamont, P. K. Groom, and R. M. Cowling, “High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations,” Functional Ecology, vol. 16, no. 3, pp. 403–412, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. B. E. Medlyn, R. A. Duursma, D. Eamus et al., “Reconciling the optimal and empirical approaches to modelling stomatal conductance,” Global Change Biology, vol. 17, no. 6, pp. 2134–2144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. J. G. Hodgson, P. J. Wilson, R. Hunt, J. P. Grime, and K. Thompson, “Allocating C-S-R plant functional types: a soft approach to a hard problem,” Oikos, vol. 85, no. 2, pp. 282–294, 1999. View at Scopus
  49. M. K. Bartlett, C. Scoffoni, and L. Sack, “The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis,” Ecology Letters, vol. 15, no. 5, pp. 393–405, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Gourlet-Fleury, J. M. Guehl, and O. Laroussinie, Ecology and Management of a Neotropical Rainforest: Lessons Drawn from Paracou, a Long-Term Experimental Research Site in French Guiana, Elsevier, 2004.
  51. H. ter Steege, N. C. A. Pitman, O. L. Phillips et al., “Continental-scale patterns of canopy tree composition and function across Amazonia,” Nature, vol. 443, no. 7110, pp. 444–447, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Baraloto, O. J. Hardy, C. E. T. Paine et al., “Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities,” Journal of Ecology, vol. 100, no. 3, pp. 690–701, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Ollivier, C. Baraloto, and E. Marcon, “A trait database for Guianan rain forest trees permits intra- and inter-specific contrasts,” Annals of Forest Science, vol. 64, no. 7, pp. 781–786, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. D. A. King, S. J. Davies, and N. S. M. Noor, “Growth and mortality are related to adult tree size in a Malaysian mixed dipterocarp forest,” Forest Ecology and Management, vol. 223, pp. 152–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Weiher, A. van der Werf, K. Thompson, M. Roderick, E. Garnier, and O. Eriksson, “Challenging theophrastus: a common core list of plant traits for functional ecology,” Journal of Vegetation Science, vol. 10, no. 5, pp. 609–620, 1999. View at Scopus
  56. D. Bonal, A. Bosc, S. Ponton et al., “Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana,” Global Change Biology, vol. 14, no. 8, pp. 1917–1933, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. F. Wagner, B. Hérault, C. Stahl, D. Bonal, and V. Rossi, “Modeling water availability for trees in tropical forests,” Agricultural and Forest Meteorology, vol. 151, no. 9, pp. 1202–1213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Schwarz, “Estimating the dimension of a model,” Annals of Statistics, vol. 6, no. 2, pp. 461–464, 1978.
  59. S. Diaz, S. Lavorel, F. de Bello, F. Quetier, K. Grigulis, and T. M. Robson, “Incorporating plant functional diversity effects in ecosystem service assessments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20684–20689, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. O. L. Phillips, G. van der Heijden, S. L. Lewis et al., “Drought-mortality relationships for tropical forests,” New Phytologist, vol. 187, no. 3, pp. 631–646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Nepstad, P. Lefebvre, U. L. Da Silva et al., “Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis,” Global Change Biology, vol. 10, no. 5, pp. 704–717, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Wang, C. Alo, R. Mei, and S. Sun, “Droughts, hydraulic redistribution, and their impact on vegetation composition in the Amazon forest,” Plant Ecology, vol. 212, no. 4, pp. 663–673, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. J. W. Westbrook, K. Kitajima, J. G. Burleigh, W. J. Kress, D. L. Erickson, and S. J. Wright, “What makes a leaf tough? Patterns of correlated evolutionbetween leaf toughness traits and demographic rates among 197 shade-tolerant woody species in a neotropical forest,” American Naturalist, vol. 177, no. 6, pp. 800–811, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Kitajima and L. Poorter, “Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species,” New Phytologist, vol. 186, no. 3, pp. 708–721, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. U. Seibt, A. Rajabi, H. Griffiths, and J. A. Berry, “Carbon isotopes and water use efficiency: sense and sensitivity,” Oecologia, vol. 155, no. 3, pp. 441–454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Sack, C. Scoffoni, A. D. McKown et al., “Developmentally based scaling of leaf venation architecture explains global ecological patterns,” Nature Communications, vol. 3, p. 837, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. J. L. Baltzer, D. M. Gregoire, S. Bunyavejchewin, N. S. M. Noor, and S. J. Davies, “Coordination of foliar and wood anatomical traits contributes to tropical tree distributions and productivity along the malay-thai peninsula,” American Journal of Botany, vol. 96, no. 12, pp. 2214–2223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Pennec, V. R. Gond, and D. Sabatier, “Tropical forest phenology in French Guiana from MODIS time series,” Remote Sensing Letters, vol. 2, no. 4, pp. 337–345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. IPCC, Climate Change 2007, the Fourth Assessment Report (AR4), 2007.
  70. D. Nepstad, P. Moutinho, M. Dias et al., “The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest,” Journal of Geophysical Research-Atmospheres, vol. 107, no. 20, 2002. View at Publisher · View at Google Scholar