About this Journal Submit a Manuscript Table of Contents
International Journal of Ecology
Volume 2014 (2014), Article ID 835636, 6 pages
http://dx.doi.org/10.1155/2014/835636
Review Article

Ecological Importance of Insects in Selenium Biogenic Cycling

1Agrochemical Research Center, All-Russian Scientific Research Institute of Vegetable Breeding and Seeds Production, Russian Academy of Agricultural Sciences, Moscow 143080, Russia
2Department of Natural Sciences and Geography, Pridnestrovian State University, 3300 Tiraspol, Moldova

Received 23 July 2013; Accepted 30 December 2013; Published 6 February 2014

Academic Editor: Jean-Guy Godin

Copyright © 2014 Nadezhda Golubkina et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Golubkina and T. Papazyan, Selenium in Nutrition. Plants, Animals, Human Beings, Pechatny Gorod, Moscow, Russia, 2006.
  2. G. R. Hogan and H. G. Razniak, “Selenium-induced mortality and tissue distribution studies in Tenebrio molitor (Coleoptera: Tenebrionidae),” Environmental Entomology, vol. 20, no. 3, pp. 790–794, 1991.
  3. C. E. Chapple and R. Guigó, “Relaxation of selective constraints causes independent selenoprotein extinction in insect genomes,” PLoS ONE, vol. 3, no. 8, Article ID e2968, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. V. B. Chernishov, Insect Ecology, Moscow, Russia, 1996.
  5. T. D. Schowalter, Insect Ecology: An Ecosystem Approach, Academic Press, San Diego, Calif, USA, 3rd edition, 2011.
  6. Y. Zhang and V. N. Gladyshev, “General trends in trace element utilization revealed by comparative genomic analyses of Co, Cu, Mo, Ni, and Se,” The Journal of Biological Chemistry, vol. 285, no. 5, pp. 3393–3405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. V. Lobanov, D. L. Hatfield, and V. N. Gladyshev, “Selenoproteinless animals: selenophosphate synthetase SPS1 functions in a pathway unrelated to selenocysteine biosynthesis,” Protein Science, vol. 17, no. 1, pp. 176–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. T. W. Simmons, I. S. Jamall, and R. A. Lockshin, “Selenium modulates peroxidation in the absence of glutathione peroxidase in Musca domestica,” Biochemical and Biophysical Research Communications, vol. 165, no. 1, pp. 158–163, 1989. View at Publisher · View at Google Scholar · View at Scopus
  9. A. D. Pokarzhevsky, Geochemical Ecology of Terrestrial and Soil Animals (Bioindicative and Radiological Aspects), Moscow, Russia, 1993.
  10. F. J. Martin-Romero, G. V. Kryukov, A. V. Lobanov et al., “Selenium metabolism in Drosophila. Selenoproteins, selenoprotein mRNA expression, fertility, and mortality,” The Journal of Biological Chemistry, vol. 276, no. 32, pp. 29798–29804, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Smitha and A. V. B. Rao, “Effects of selenium on the physiology of heart beat, oxygen consumption and growth in silkworm Bombyx mori L.,” American-Eurasian Journal of Toxicological Sciences, vol. 2, no. 4, pp. 215–219, 2010.
  12. H. J. R. Popham, K. S. Shelby, and T. W. Popham, “Effect of dietary selenium supplementation on resistance to baculovirus infection,” Biological Control, vol. 32, no. 3, pp. 419–426, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Audas, G. R. Hogan, and H. Razniak, “Incubation temperature as a modifying factor on survival of Tenebrio molitor reared in selenium-containing media,” Journal of Toxicology and Environmental Health, vol. 44, no. 1, pp. 115–122, 1995. View at Scopus
  14. A. L. Moxon, “Selenium: its occurrence in the rocks and soils, absorption by plants, toxic action in animals, and possible essential role in animal nutrition,” in Trace Elements, Proceedings of the Conference, C. A. Lamb, O. G. Bentley, and J. M. Beattie, Eds., pp. 175–191, Academic Press, New York, NY, USA, 1958.
  15. D. B. Vickerman and J. T. Trumble, “Biotransfer of selenium: effects on an insect predator, Podisus maculiventris,” Ecotoxicology, vol. 12, no. 6, pp. 497–504, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. D. B. Vickerman, J. K. Young, and J. T. Trumble, “Effect of selenium-treated alfalfa on development, survival, feeding, and oviposition preferences of Spodoptera exigua (Lepidoptera: Noctuidae),” Environmental Entomology, vol. 31, no. 6, pp. 953–959, 2002. View at Scopus
  17. W. E. Hillwalker, P. C. Jepson, and K. A. Anderson, “Selenium accumulation patterns in lotic and lentic aquatic systems,” Science of the Total Environment, vol. 366, no. 1, pp. 367–379, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Lalitha, P. Rani, and V. Narayanaswami, “Metabolic relevance of selenium in the insect Corcyra cephalonica: uptake of 75Se and subcellular distribution,” Biological Trace Element Research, vol. 41, no. 3, pp. 217–233, 1994. View at Scopus
  19. R. Andrahennadi, Biotransformation of selenium and arsenic in insects: environmental implications [Ph.D. dissertation], University of Saskatchewan, 2009.
  20. D. B. Vickerman, J. T. Trumble, G. N. George, I. J. Pickering, and H. Nichol, “Selenium biotransformations in an insect ecosystem: effects of insects on phytoremediation,” Environmental Science and Technology, vol. 38, no. 13, pp. 3581–3586, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. C. L. Mogren and J. T. Trumble, “The impacts of metals and metalloids on insect behavior,” Entomologia Experimentalis et Applicata, vol. 135, no. 1, pp. 1–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. T. Trumble, G. S. Kund, and K. K. White, “Influence of form and quantity of selenium on the development and survival of an insect herbivore,” Environmental Pollution, vol. 101, no. 2, pp. 175–182, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. D. B. Vickerman and J. T. Trumble, “Feeding preferences of Spodoptera exigua in response to form and concentration of selenium,” Archives of Insect Biochemistry and Physiology, vol. 42, no. 1, pp. 64–73, 1999. View at Scopus
  24. P. D. Jensen, M. D. Rivas, and J. T. Trumble, “Developmental responses of a terrestrial insect detritivore, Megaselia scalaris (Loew) to four selenium species,” Ecotoxicology, vol. 14, no. 3, pp. 313–322, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. H. M. Ohlendorf, “Ecotoxicology of selenium,” in Handbook of Ecotoxicology, pp. 465–500, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2003.
  26. M. L. Galeas, E. M. Klamper, L. E. Bennett et al., “Selenium hyperaccumulation reduces plant arthropod loads in the field,” New Phytologist, vol. 177, no. 3, pp. 715–724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. L. Freeman, C. F. Quinn, M. A. Marcus, S. Fakra, and E. A. H. Pilon-Smits, “Selenium-tolerant Diamondback Moth disarms hyperaccumulator plant defense,” Current Biology, vol. 16, no. 22, pp. 2181–2192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Ch. Poschenrieder, R. Tolrà, and J. Barceló, “Can metals defend plants against biotic stress?” Trends in Plant Science, vol. 11, no. 6, pp. 288–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Hartl and I. T. Baldwin, “Evolution: the ecological reverberations of toxic trace elements,” Current Biology, vol. 16, no. 22, pp. R958–R960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. L. Freeman, S. D. Lindblom, C. F. Quinn, S. Fakra, M. A. Marcus, and E. A. H. Pilon-Smits, “Selenium accumulation protects plants from herbivory by Orthoptera via toxicity and deterrence,” New Phytologist, vol. 175, no. 3, pp. 490–500, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Hanson, G. F. Garifullina, S. D. Lindblom et al., “Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection,” New Phytologist, vol. 159, no. 2, pp. 461–469, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Ślesak, H. Ślesak, M. Libik, and Z. Miszalski, “Antioxidant response system in the short-term post-wounding effect in Mesembryanthemum crystallinum leaves,” Journal of Plant Physiology, vol. 165, no. 2, pp. 127–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Golubkina and K. Skriabin, “Anomalous accumulation of selenium by genetically modified potato, stable to Colorado beetle,” Journal of Food Composition and Analysis, vol. 23, no. 2, pp. 190–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Bradbear, Bees and Their Role in Forest Livelihoods: A Guide to the Services Provided by Bees and the Sustainable Harvesting, Processing and Marketing of Their Products, Food and Agriculture Organization of the United Nations, Rome, Italy, 2009.
  35. K. R. Hladun, O. Kaftanoglu, D. R. Parker, et al., “Effects of selenium on development, survival, and accumulation in the honeybee (Apis mellifera L.),” Environmental Toxicology and Chemistry, vol. 32, no. 11, pp. 2584–2592, 2013.
  36. K. R. Hladun, B. H. Smith, J. A. Mustard, R. R. Morton, and J. T. Trumble, “Selenium toxicity to honey bee (Apis mellifera l.) pollinators: effects on behaviors and survival,” PLoS ONE, vol. 7, no. 4, Article ID e34137, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. C. F. Quinn, C. N. Prins, J. L. Freeman et al., “Selenium accumulation in flowers and its effects on pollination,” New Phytologist, vol. 192, no. 3, pp. 727–737, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Balayiannis and P. Balayiannis, “Bee honey as an environmental bioindicator of pesticides' occurrence in six agricultural areas of Greece,” Archives of Environmental Contamination and Toxicology, vol. 55, no. 3, pp. 462–470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Celli and B. Maccagnani, “Honey bees as bioindicators of environmental pollution,” Bulletin of Insectology, vol. 56, no. 1, pp. 137–139, 2003. View at Scopus
  40. N. Desneux, A. Decourtye, and J.-M. Delpuech, “The sublethal effects of pesticides on beneficial arthropods,” Annual Review of Entomology, vol. 52, pp. 81–106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Roman, “Levels of copper, selenium, lead, and cadmium in forager bees,” Polish Journal of Environmental Studies, vol. 19, no. 3, pp. 663–669, 2010. View at Scopus
  42. J. Hesketh, “Nutrigenomics and selenium: gene expression patterns, physiological targets, and genetics,” Annual Review of Nutrition, vol. 28, pp. 157–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. Ecological Assessment of Selenium in the Aquatic Environment, CRC Press, Boca Raton, Fla, USA, 2010.
  44. S. J. Hamilton, “Review of selenium toxicity in the aquatic food chain,” Science of the Total Environment, vol. 326, no. 1-3, pp. 1–31, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. Th. S. Presser and S. N. Luoma, “A methodology for ecosystem-scale modeling of selenium,” Integrated Environmental Assessment and Management, vol. 6, no. 4, pp. 685–710, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. J. M. Conley, D. H. Funk, and D. B. Buchwalter, “Selenium bioaccumulation and maternal transfer in the mayfly Centroptilum triangulifer in a life-cycle, periphyton-biofilm trophic assay,” Environmental Science and Technology, vol. 43, no. 20, pp. 7952–7957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Alaimo, R. S. Ogle, and A. W. Knight, “Selenium uptake by larval Chironomus decorus from a Ruppia maritima-based benthic/detrital substrate,” Archives of Environmental Contamination and Toxicology, vol. 27, no. 4, pp. 441–448, 1994. View at Scopus
  48. J. C. Malloy, M. L. Meade, and E. W. Olsen, “Small-scale spatial variation of selenium concentrations in chironomid larvae,” Bulletin of Environmental Contamination and Toxicology, vol. 62, no. 2, pp. 122–129, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Costa-Silva, M. Maia, C. C. Matos, E. Calçada, A. I. R. N. A. Barros, and F. M. Nunes, “Selenium content of Portuguese unifloral honeys,” Journal of Food Composition and Analysis, vol. 24, no. 3, pp. 351–355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Tuzen, S. Silici, D. Mendil, and M. Soylak, “Trace element levels in honeys from different regions of Turkey,” Food Chemistry, vol. 103, no. 2, pp. 325–330, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. N. A. Golubkina, S. S. Sheshnitsan, M. V. Kapitalchuk, and N. V. Pedurari, “Particularities of selenium bioaccumulation by insects in forest-steppe and steppe of the Dniester Valley,” in Geoecological and Bioecological Issues of the Northern Black Sea Region, Proceedings of the Conference, pp. 82–83, Tiraspol, Moldova, 2012.
  52. M. V. Kapitalchuk, I. P. Kapitalchuk, and N. A. Golubkina, “Selenium accumulation and migration in components of the biogeochemical food chain “soil—plant—human” in Moldova,” Volga Journal of Ecology, no. 3, pp. 323–335, 2011 (Russian).