About this Journal Submit a Manuscript Table of Contents
International Journal of Electrochemistry
Volume 2011 (2011), Article ID 825790, 11 pages
http://dx.doi.org/10.4061/2011/825790
Review Article

Recent Advances in Electrochemical Glycobiosensing

Bioprocess Measurements Group, Biochemical Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA

Received 16 March 2011; Accepted 8 April 2011

Academic Editor: Bengi Uslu

Copyright © 2011 Germarie Sánchez-Pomales and Rebecca A. Zangmeister. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Varki, et al., Ed., Essentials of Glycobiology, Cold Spring Harbor Press, Cold Spring Harbor, NY, USA, 1999.
  2. D. H. Dube and C. R. Bertozzi, “Glycans in cancer and inflammation—potential for therapeutics and diagnostics,” Nature Reviews Drug Discovery, vol. 4, no. 6, pp. 477–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. N. H. Packer, C. W. von der Lieth, K. F. Aoki-Kinoshita et al., “Frontiers in glycomics: bioinformatics and biomarkers in disease: an NIH White Paper prepared from discussions by the focus groups at a workshop on the NIH campus, Bethesda MD (September 11–13, 2006),” Proteomics, vol. 8, no. 1, pp. 8–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. H. J. An, S. R. Kronewitter, M. L. A. de Leoz, and C. B. Lebrilla, “Glycomics and disease markers,” Current Opinion in Chemical Biology, vol. 13, no. 5-6, pp. 601–607, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Patwa, C. Li, D. M. Simeone, et al., “Glycoprotein analysis using protein microarrays and mass spectrometry,” Mass Spectrometry Reviews, vol. 29, no. 5, pp. 830–844, 2010.
  6. P. M. Drake, W. Cho, B. Li et al., “Sweetening the pot: adding glycosylation to the biomarker discovery equation,” Clinical Chemistry, vol. 56, no. 2, pp. 223–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Qiu, T. H. Patwa, LI. Xu et al., “Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot,” Journal of Proteome Research, vol. 7, no. 4, pp. 1693–1703, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Ueda, T. Katagiri, T. Shimada et al., “Comparative profiling of serum glycoproteome by sequential purification of glycoproteins and 2-nitrobenzenesulfenyl (NBS) stable isotope labeling: a new approach for the novel biomarker discovery for cancer,” Journal of Proteome Research, vol. 6, no. 9, pp. 3475–3483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. J. An, S. Miyamoto, K. S. Lancaster et al., “Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer,” Journal of Proteome Research, vol. 5, no. 7, pp. 1626–1635, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. M. Rudd, T. Elliott, P. Cresswell, I. A. Wilson, and R. A. Dwek, “Glycosylation and the immune system,” Science, vol. 291, no. 5512, pp. 2370–2376, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. van Kooyk and G. A. Rabinovich, “Protein-glycan interactions in the control of innate and adaptive immune responses,” Nature Immunology, vol. 9, no. 6, pp. 593–601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Walsh and R. Jefferis, “Post-translational modifications in the context of therapeutic proteins,” Nature Biotechnology, vol. 24, no. 10, pp. 1241–1252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. J. Chirino and A. Mire-Sluis, “Characteristics biological products and assessing comparability following manufacturing changes,” Nature Biotechnology, vol. 22, no. 11, pp. 1383–1391, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Jefferis, “Glycosylation of recombinant antibody therapeutics,” Biotechnology Progress, vol. 21, no. 1, pp. 11–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. A. Brooks, “Strategies for analysis of the glycosylation of proteins: current status and future perspectives,” Molecular Biotechnology, vol. 43, no. 1, pp. 76–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Butler, “Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by mammalian cell systems,” Cytotechnology, vol. 50, no. 1-3, pp. 57–76, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Jenkins, R. B. Parekh, and D. C. James, “Getting the glycosylation right: implications for the biotechnology industry,” Nature Biotechnology, vol. 14, no. 8, pp. 975–981, 1996. View at Scopus
  18. L. Ding, W. Cheng, X. Wang et al., “A label-free strategy for facile electrochemical analysis of dynamic glycan expression on living cells,” Chemical Communications, no. 46, pp. 7161–7163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Dell and H. R. Morris, “Glycoprotein structure determination by mass spectrometry,” Science, vol. 291, no. 5512, pp. 2351–2356, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Kawasaki, M. Ohta, S. Hyuga, O. Hashimoto, and T. Hayakawa, “Analysis of carbohydrate heterogeneity in a glycoprotein using liquid chromatography/mass spectrometry and liquid chromatography with tandem mass spectrometry,” Analytical Biochemistry, vol. 269, no. 2, pp. 297–303, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Lim, A. Reed-Bogan, and B. J. Harmon, “Glycosylation profiling of a therapeutic recombinant monoclonal antibody with two N-linked glycosylation sites using liquid chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer,” Analytical Biochemistry, vol. 375, no. 2, pp. 163–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Zamfir and J. Peter-Katalinić, “Capillary electrophoresis-mass spectrometry for glycoscreening in biomedical research,” Electrophoresis, vol. 25, no. 13, pp. 1949–1963, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Meyer and T. Peters, “NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors,” Angewandte Chemie International Edition, vol. 42, no. 8, pp. 864–890, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. H. J. Gabius, H. C. Siebert, S. André, J. Jiménez-Barbero, and H. Rüdiger, “Chemical biology of the sugar code,” ChemBioChem, vol. 5, no. 6, pp. 740–764, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. R. Wormald, A. J. Petrescu, Y. L. Pao, A. Glithero, T. Elliott, and R. A. Dwek, “Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling,” Chemical Reviews, vol. 102, no. 2, pp. 371–386, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Ø. Duus, C. H. Gotfredsen, and K. Bock, “Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations,” Chemical Reviews, vol. 100, no. 12, pp. 4589–4614, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Blow, “Glycobiology: a spoonful of sugar,” Nature, vol. 457, no. 7229, pp. 617–620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Kamoda and K. Kakehi, “Capillary electrophoresis for the analysis of glycoprotein pharmaceuticals,” Electrophoresis, vol. 27, no. 12, pp. 2495–2504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. P. M. Rudd, H. C. Joao, E. Coghill et al., “Glycoforms modify the dynamic stability and functional activity of an enzyme,” Biochemistry, vol. 33, no. 1, pp. 17–22, 1994. View at Scopus
  30. Y. Wada, A. Dell, S. M. Haslam et al., “Comparison of methods for profiling O-glycosylation: human proteome organisation human disease glycomics/proteome initiative multi-institutional study of IgA1,” Molecular & Cellular Proteomics, vol. 9, no. 4, pp. 719–727, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Wada, P. Azadi, C. E. Costello et al., “Comparison of the methods for profiling glycoprotein glycans—HUPO human disease glycomics/proteome initiative multi-institutional study,” Glycobiology, vol. 17, no. 4, pp. 411–422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Thobhani, C. T. Yuen, M. J. A. Bailey, and C. Jones, “Identification and quantification of N -linked oligosaccharides released from glycoproteins: an inter-laboratory study,” Glycobiology, vol. 19, no. 3, pp. 201–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Beck, E. Wagner-Rousset, M. C. Bussat et al., “Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins,” Current Pharmaceutical Biotechnology, vol. 9, no. 6, pp. 482–501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Cunningham, J. Q. Gerlach, M. Kane, and L. Joshi, “Glyco-biosensors: recent advances and applications for the detection of free and bound carbohydrates,” Analyst, vol. 135, no. 10, pp. 2471–2480, 2010. View at Publisher · View at Google Scholar
  35. J. Hirabayashi, “Lectin-based structural glycomics: glycoproteomics and glycan profiling,” Glycoconjugate Journal, vol. 21, no. 1-2, pp. 35–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. L. C. Clark and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Annals of the New York Academy of Sciences, vol. 102, pp. 29–45, 1962. View at Scopus
  37. J. Wang, “Electrochemical glucose biosensors,” Chemical Reviews, vol. 108, no. 2, pp. 814–825, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. S. J. Updike and G. P. Hicks, “The enzyme electrode,” Nature, vol. 214, no. 5092, pp. 986–988, 1967. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Wang, “Glucose biosensors: 40 years of advances and challenges,” Electroanalysis, vol. 13, no. 12, pp. 983–988, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Q. Gerlach, S. Cunningham, M. Kane, and L. Joshi, “Glycobiomimics and glycobiosensors,” Biochemical Society Transactions, vol. 38, no. 5, pp. 1333–1336, 2010. View at Publisher · View at Google Scholar
  41. R. Jelinek and S. Kolusheva, “Carbohydrate biosensors,” Chemical Reviews, vol. 104, no. 12, pp. 5987–6015, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. R. P. Baldwin, “Electrochemical determination of carbohydrates: enzyme electrodes and amperometric detection in liquid chromatography and capillary electrophoresis,” Journal of Pharmaceutical and Biomedical Analysis, vol. 19, no. 1-2, pp. 69–81, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. T. R. I. Cataldi, C. Campa, and G. E. De Benedetto, “Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: the potential is still growing,” Fresenius' Journal of Analytical Chemistry, vol. 368, no. 8, pp. 739–758, 2000. View at Scopus
  44. P. L. Weber and S. M. Lunte, “Capillary electrophoresis with pulsed amperometric detection of carbohydrates and glycopeptides,” Electrophoresis, vol. 17, no. 2, pp. 302–309, 1996. View at Publisher · View at Google Scholar · View at Scopus
  45. M. R. Hardy and R. R. Townsend, “Separation of positional isomers of oligosaccharides and glycopeptides by high-performance anion-exchange chromatography with pulsed amperometric detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 10, pp. 3289–3293, 1988. View at Scopus
  46. M. W. Spellman, “Carbohydrate characterization of recombinant glycoproteins of pharmaceutical interest,” Analytical Chemistry, vol. 62, no. 17, pp. 1714–1722, 1990. View at Scopus
  47. R. R. Townsend, “Analysis of glycoconjugates using high-pH anion-exchange chromatography,” in Carbohydrate Analysis, Z. El Rassi, Ed., pp. 181–209, Elsevier, Amsterdam, The Netherlands, 1995.
  48. W. Cheng, L. Ding, S. Ding, Y. Yin, and H. Ju, “A simple electrochemical cytosensor array for dynamic analysis of carcinoma cell surface glycans,” Angewandte Chemie International Edition, vol. 48, no. 35, pp. 6465–6468, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. Shao, Y. Li, Q. Yang, J. Wang, and G. Li, “A novel electrochemical method to detect cell surface carbohydrates and target cells,” Analytical and Bioanalytical Chemistry, vol. 398, no. 7-8, pp. 2963–2967, 2010. View at Publisher · View at Google Scholar
  50. Y. Xue, L. Ding, J. Lei, and H. Ju, “A simple electrochemical lectin-probe for in situ homogeneous cytosensing and facile evaluation of cell surface glycan,” Biosensors & Bioelectronics, vol. 26, no. 1, pp. 169–174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. X. Zhang, Y. Teng, Y. Fu et al., “Lectin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells,” Analytical Chemistry, vol. 82, no. 22, pp. 9455–9460, 2010. View at Publisher · View at Google Scholar
  52. W. Cheng, L. Ding, J. Lei, S. Ding, and H. Ju, “Effective cell capture with tetrapeptide-functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate,” Analytical Chemistry, vol. 80, no. 10, pp. 3867–3872, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Ding, Q. Ji, R. Qian, W. Cheng, and J. Huangxian, “Lectin-based nanoprobes functionalized with enzyme for highly sensitive electrochemical monitoring of dynamic carbohydrate expression on living cells,” Analytical Chemistry, vol. 82, no. 4, pp. 1292–1298, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. J. J. Zhang, F. F. Cheng, T. T. Zheng, and J. J. Zhu, “Design and implementation of electrochemical cytosensor for evaluation of cell surface carbohydrate and glycoprotein,” Analytical Chemistry, vol. 82, no. 9, pp. 3547–3555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Tang, B. Su, J. Tang, J. Ren, and G. Chen, “Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads,” Analytical Chemistry, vol. 82, no. 4, pp. 1527–1534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. F. Xi, J. Gao, J. Wang, and Z. Wang, “Discrimination and detection of bacteria with a label-free impedimetric biosensor based on self-assembled lectin monolayer,” Journal of Electroanalytical Chemistry, vol. 656, no. 1-2, pp. 252–257, 2011. View at Publisher · View at Google Scholar
  57. V. J. Nagaraj, S. Aithal, S. Eaton, M. Bothara, P. Wiktor, and S. Prasad, “NanoMonitor: a miniature electronic biosensor for glycan biomarker detection,” Nanomedicine, vol. 5, no. 3, pp. 369–378, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. J. T. La Belle, J. Q. Gerlach, S. Svarovsky, and L. Joshi, “Label-free impedimetric detection of glycan-lectin interactions,” Analytical Chemistry, vol. 79, no. 18, pp. 6959–6964, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. D. L. Oliveira, M. T. S. Correia, and F. B. Diniz, “A novel approach to classify serum glycoproteins from patients infected by dengue using electrochemical impedance spectroscopy analysis,” Synthetic Metals, vol. 159, no. 21-22, pp. 2162–2164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. D. L. Oliveira, M. T. S. Correia, and F. B. Diniz, “Concanavalin A and polyvinyl butyral use as a potential dengue electrochemical biosensor,” Biosensors & Bioelectronics, vol. 25, no. 4, pp. 728–732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. M. D. L. Oliveira, M. T. S. Correia, L. C. B. B. Coelho, and F. B. Diniz, “Electrochemical evaluation of lectin-sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral,” Colloids and Surfaces B, vol. 66, no. 1, pp. 13–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. D. L. Oliveira, M. L. Nogueira, M. T. S. Correia, L. C. B. B. Coelho, and C. A. S. Andrade, “Detection of dengue virus serotypes on the surface of gold electrode based on Cratylia mollis lectin affinity,” Sensors and Actuators B, vol. 155, no. 2, pp. 789–795, 2011. View at Publisher · View at Google Scholar
  63. Y. Wan, D. Zhang, and B. Hou, “Monitoring microbial populations of sulfate-reducing bacteria using an impedimetric immunosensor based on agglutination assay,” Talanta, vol. 80, no. 1, pp. 218–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Gamella, S. Campuzano, C. Parrado, A. J. Reviejo, and J. M. Pingarrón, “Microorganisms recognition and quantification by lectin adsorptive affinity impedance,” Talanta, vol. 78, no. 4-5, pp. 1303–1309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Matumoto, N. Sato, H. Cabral, K. Kataoka, and Y. Miyahara, “Label free potentiometric sialic acid detection applicable to living cell diagnosis,” in IEEE Sensors Conference (SENSORS '09), pp. 1885–1888, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. X. H. Fu, “Poly(amidoamine) dendrimer-functionalized magnetic beads as an immunosensing probe for electrochemical immunoassay for carbohydrate antigen-125 in human serum,” Analytical Letters, vol. 43, no. 3, pp. 455–465, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. Z. Dai, A. N. Kawde, Y. Xiang et al., “Nanoparticle-based sensing of glycan-lectin interactions,” Journal of the American Chemical Society, vol. 128, no. 31, pp. 10018–10019, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. B. Gu, C. Xu, C. Yang, S. Liu, and M. Wang, “ZnO quantum dot labeled immunosensor for carbohydrate antigen 19-9,” Biosensors & Bioelectronics, vol. 26, no. 5, pp. 2720–2723, 2011. View at Publisher · View at Google Scholar
  69. D. R. Thevenot, K. Toth, R. A. Durst, et al., “Electrochemical biosensors: recommended definitions and classification—(technical report),” Pure and Applied Chemistry, vol. 71, no. 12, pp. 2333–2348, 1999.
  70. D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, “Electrochemical biosensors: recommended definitions and classification,” Biosensors & Bioelectronics, vol. 16, no. 1-2, pp. 121–131, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. E. H. Yoo and S. Y. Lee, “Glucose biosensors: an overview of use in clinical practice,” Sensors, vol. 10, no. 5, pp. 4558–4576, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Heller and B. Feldman, “Electrochemical glucose sensors and their applications in diabetes management,” Chemical Reviews, vol. 108, no. 7, pp. 2482–2505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. G. S. Wilson and Y. Hu, “Enzyme-based biosensors for in vivo measurements,” Chemical Reviews, vol. 100, no. 7, pp. 2693–2704, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabetic Medicine, vol. 26, no. 3, pp. 197–210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. J. D. Newman and A. P. F. Turner, “Home blood glucose biosensors: a commercial perspective,” Biosensors & Bioelectronics, vol. 20, no. 12, pp. 2435–2453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. A. M. Wu, “Carbohydrate structural units in glycoproteins and polysaccharides as important ligands for Gal and GalNAc reactive lectins,” Journal of Biomedical Science, vol. 10, no. 6, pp. 676–688, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. A. M. Wu, E. Lisowska, M. Duk, and Z. Yang, “Lectins as tools in glycoconjugate research,” Glycoconjugate Journal, vol. 26, no. 8, pp. 899–913, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Mislovičová, P. Gemeiner, A. Kozarova, and T. Kožár, “Lectinomics I. Relevance of exogenous plant lectins in biomedical diagnostics,” Biologia, vol. 64, no. 1, pp. 1–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Gemeiner, D. Mislovičová, J. Tkáč et al., “Lectinomics. II. A highway to biomedical/clinical diagnostics,” Biotechnology Advances, vol. 27, no. 1, pp. 1–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Szunerits, J. Niedziolka-Jonsson, R. Boukherroub, P. Woisel, J.-S. Baumann, and A. Siriwardena, “Label-free detection of lectins on carbohydrate-modified boron-doped diamond surfaces,” Analytical Chemistry, vol. 82, no. 19, pp. 8203–8210, 2010. View at Publisher · View at Google Scholar
  81. L. Tan, Q. Xie, and S. Yao, “Electrochemical piezoelectric quartz crystal impedance study on the interaction between concanavalin A and glycogen at Au electrodes,” Bioelectrochemistry, vol. 70, no. 2, pp. 348–355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. R. R. Ueta and F. B. Diniz, “Adsorption of concanavalin A and lentil lectin on platinum electrodes followed by electrochemical impedance spectroscopy: effect of protein state,” Colloids and Surfaces B, vol. 61, no. 2, pp. 244–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. Y. Xue, L. Ding, J. Lei, F. Yan, and H. Ju, “In situ electrochemical imaging of membrane glycan expression on micropatterned adherent single cells,” Analytical Chemistry, vol. 82, no. 17, pp. 7112–7118, 2010. View at Publisher · View at Google Scholar
  84. L. Ding, W. Cheng, X. Wang, S. Ding, and H. Ju, “Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrate,” Journal of the American Chemical Society, vol. 130, no. 23, pp. 7224–7225, 2008. View at Publisher · View at Google Scholar · View at Scopus