About this Journal Submit a Manuscript Table of Contents
International Journal of Electrochemistry
Volume 2012 (2012), Article ID 194183, 6 pages
http://dx.doi.org/10.1155/2012/194183
Research Article

Electrocatalytic Oxidation of Hydrogen Peroxide Based on the Shuttlelike Nano-CuO-Modified Electrode

College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241000, China

Received 12 August 2011; Revised 20 October 2011; Accepted 20 October 2011

Academic Editor: Suna Timur

Copyright © 2012 Geng Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Razmi and H. Heidari, “Amperometric determination of hydrogen peroxide on surface of a novel PbPCNF-modified carbon-ceramic electrode in acidic medium,” Journal of Electroanalytical Chemistry, vol. 625, no. 2, pp. 101–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Matsubara, N. Kawamoto, and K. Takamura, “Oxo [5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide,” The Analyst, vol. 117, no. 11, pp. 1781–1784, 1992. View at Scopus
  3. A. Lobnik and M. Cajlakovic, “Sol-gel based optical sensor for continuous determination of dissolved hydrogen peroxide,” Sensors and Actuators B, vol. 74, no. 1–3, pp. 194–199, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Genfa, P. K. Dasgupta, W. S. Edgemond, and J. N. Marx, “Determination of hydrogen peroxide by photoinduced fluorogenic reactions,” Analytica Chimica Acta, vol. 243, no. 2, pp. 207–216, 1991. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Y. Shi, J. X. Lu, F. Xu, H. G. Zhou, L. T. Jin, and J. Y. Jin, “Liquid chromatography—Electrochemical detector for the determination of glucose in rat brain combined with in vivo microdialysis,” Analytica Chimica Acta, vol. 413, no. 1-2, pp. 131–136, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. U. Pinkernell, S. Effkemann, and U. Karst, “Simultaneous HPLC determination of peroxyacetic acid and hydrogen peroxide,” Analytical Chemistry, vol. 69, no. 17, pp. 3623–3627, 1997. View at Scopus
  7. F. R. P. Rocha, E. R. Torralba, B. F. Reis, A. M. Rubio, and M. de la Guardia, “A portable and low cost equipment for flow injection chemiluminescence measurements,” Talanta, vol. 67, no. 4, pp. 673–677, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Navas, A. M. Jiménez, and G. Galán, “Air analysis: determination of hydrogen peroxide by chemiluminescence,” Atmospheric Environment, vol. 33, no. 14, pp. 2279–2283, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. E. C. Hurdis and H. Romeyn Jr., “Accuracy of determination of hydrogen peroxide by cerate oxidimetry,” Analytical Chemistry, vol. 26, no. 2, pp. 320–325, 1954. View at Scopus
  10. X. M. Miao, R. Yuan, Y. Q. Chai, Y. T. Shi, and Y. Y. Yuan, “Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode,” Journal of Electroanalytical Chemistry, vol. 612, no. 2, pp. 157–163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Zou, L. X. Sun, and F. Xu, “Prussian Blue electrodeposited on MWNTs-PANI hybrid composites for H2O2 detection,” Talanta, vol. 72, no. 2, pp. 437–442, 2007.
  12. W. Z. Le and Y. Q. Liu, “Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization,” Sensors and Actuators B, vol. 141, no. 1, pp. 147–153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. H. Pournaghi-Azar, F. Ahour, and F. Pournaghi-Azar, “Simple and rapid amperometric monitoring of hydrogen peroxide in salivary samples of dentistry patients exploiting its electro-reduction on the modified/palladized aluminum electrode as an improved electrocatalyst,” Sensors and Actuators B, vol. 145, no. 1, pp. 334–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. A. Kumar and S. M. Chen, “Electrocatalytic reduction of oxygen and hydrogen peroxide at poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrodes,” Journal of Molecular Catalysis A, vol. 278, no. 1-2, pp. 244–250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Xiao, X. Chen, J. X. Zhang, and W. Yang, “Direct electrochemistry of myoglobin in MnO2 nanosheet film,” Chemistry Letters, vol. 36, no. 6, pp. 772–773, 2007.
  16. A. Salimi, E. Sharifi, A. Noorbakhsh, and S. Soltanian, “Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity,” Biosensors & Bioelectronics, vol. 22, no. 12, pp. 3146–3153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Zang, M. L. Chang, X. Cui et al., “Tailoring zinc oxide nanowires for high performance amperometric glucose sensor,” Electroanalysis, vol. 19, no. 9, pp. 1008–1014, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Salimi, R. Hallaj, S. Soltanian, and H. Mamkhezri, “Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles,” Analytica Chimica Acta, vol. 594, no. 1, pp. 24–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. R. P. Wijesundera, M. Hidaka, K. Koga, M. Sakai, and W. Siripala, “Growth and characterisation of potentiostatically electrodeposited Cu2O and Cu thin films,” Thin Solid Films, vol. 500, no. 1-2, pp. 241–246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Julian, S. Luis, M. Francisco, et al., “Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells,” Electrochimica Acta, vol. 49, no. 26, pp. 4589–4597, 2004.
  21. C. B. McAuley, Y. Du, G. G. Wildgoose, and R. G. Compton, “The use of copper(II) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide,” Sensors and Actuators B, vol. 135, no. 1, pp. 230–235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. J. Song, S. W. Hwang, and D. Whang, “Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection,” Talanta, vol. 80, no. 5, pp. 1648–1652, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Zhang, S. Wang, X. Li, L. Chen, Y. Qian, and Z. Zhang, “CuO shuttle-like nanocrystals synthesized by oriented attachment,” Journal of Crystal Growth, vol. 291, no. 1, pp. 196–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Zhao, H. Wang, X. Qin et al., “A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode,” Talanta, vol. 80, no. 2, pp. 1029–1033, 2009. View at Publisher · View at Google Scholar · View at Scopus