About this Journal Submit a Manuscript Table of Contents
International Journal of Forestry Research
Volume 2010 (2010), Article ID 176909, 8 pages
Research Article

Using Florida Keys Reference Sites As a Standard for Restoration of Forest Structure in Everglades Tree Islands

1Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA
2Department of Earth and Environment, Florida International University, Miami, FL 33199, USA

Received 22 July 2009; Revised 29 October 2009; Accepted 9 December 2009

Academic Editor: Terry L. Sharik

Copyright © 2010 Michael S. Ross et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. C. Craighead, The Trees of South Florida. Volume 1: The Natural Environments and Their Succession, University of Miami Press, Coral Gables, Fla, USA, 1971.
  2. P. R. Wetzel, A. G. van der Valk, S. Newman, et al., “Heterogeneity of phosphorus distribution in a patterned landscape, the Florida Everglades,” Plant Ecology, vol. 200, no. 1, pp. 83–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. S. Carr, “The archaeology of Everglades tree islands,” in Tree Islands of the Everglades, F. H. Sklar and A. van der Valk, Eds., pp. 187–206, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.
  4. T. V. Armentano, D. T. Jones, M. S. Ross, and B. W. Gamble, “Vegetation pattern and process in tree islands of the southern Everglades and adjacent areas,” in Tree Islands of the Everglades, F. H. Sklar, A. van der Valk, et al., Eds., pp. 225–281, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.
  5. F. H. Sklar, M. J. Chimney, S. Newman, et al., “The ecological—societal underpinnings of Everglades restoration,” Frontiers in Ecology and the Environment, vol. 3, no. 3, pp. 161–169, 2005. View at Scopus
  6. B. J. Enquist and K. J. Niklas, “Invariant scaling relations across tree-dominated communities,” Nature, vol. 410, no. 6829, pp. 655–660, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. L. H. Reineke, “Perfecting a stand-density index for even-aged forests,” Journal of Agricultural Research, vol. 46, pp. 627–638, 1933.
  8. J. N. Long and T. W. Daniel, “Assessment of growing stock in uneven-aged stands,” Western Journal of Applied Forestry, vol. 5, pp. 93–96, 1990.
  9. C. W. Woodall, P. D. Miles, and J. S. Vissage, “Determining maximum stand density index in mixed species stands for strategic-scale stocking assessments,” Forest Ecology and Management, vol. 216, no. 1–3, pp. 367–377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. T. W. Daniel, J. A. Helms, and F. S. Baker, Prinicples of Silviculture, McGraw-Hill, New York, NY, USA, 1979.
  11. S. F. Gingrich, “Measuring and evaluating stocking and stand density in upland hardwood forests in the central states,” Forest Science, vol. 13, no. 1, pp. 38–53, 1967.
  12. M. S. Ross, M. Carrington, L. J. Flynn, and P. L. Ruiz, “Forest succession in tropical hardwood hammocks of the Florida keys: effects of direct mortality from Hurricane Andrew,” Biotropica, vol. 33, no. 1, pp. 23–33, 2001. View at Scopus
  13. J. R. Redwine, Leaf morphology scales multi-annual trends in nutrient cycling and leaf, flower, and fruiting phenology among species in the sub-tropical hardwood forests of the northern Florida Keys, Ph.D. dissertation, Florida International University, Miami, Fla, USA, 2007, http://digitalcommons.fiu.edu/dissertations/AAI3279233.
  14. J. W. Griffin, Archaeology of the Everglades, edited by J. T. Milanich and J. J. Miller, University Press of Florida, Gainesville, Fla, USA, 2002.
  15. M. Schwadron, “Everglades tree islands prehistory: archaeological evidence for regional Holocene variability and early human settlement,” Antiquity, vol. 80, no. 310, 2006.
  16. M.-T. Graf, M. Schwadron, P. A. Stone, M. Ross, and G. L. Chmura, “An enigmatic carbonate layer in Everglades tree island peats,” Eos, vol. 89, no. 12, pp. 117–118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. T. J. Smith III, M. B. Robblee, H. R. Wanless, and T. W. Doyle, “Mangroves, hurricanes, and lightning strikes. Assessment of Hurricane Andrew suggests an interaction across two differing scales of disturbance,” BioScience, vol. 44, no. 4, pp. 256–262, 1994. View at Scopus
  18. I. Olmsted, H. Dunevitz, and W. J. Platt, “Effects of freezes in Everglades National Park Florida, USA,” Tropical Ecology, vol. 34, pp. 17–34, 1993.
  19. D. Wade, J. Ewel, and R. Hofstetter, “Fire in South Florida ecosystems,” Forest Service General Technical Report SE-17, p. 125, USDA, Washington, DC, USA, 1980.
  20. T. V. Arrmentano, R. F. Doren, W. J. Platt, and T. Mullins, “Effects of Hurricane Andrew on coastal and interior forests of Southern Florida: overview and synthesis,” Journal of Coastal Research, vol. 21, pp. 111–144, 1995.
  21. M. S. Ross, C. L. Coultas, and Y. P. Hsieh, “Soil-productivity relationships and organic matter turnover in dry tropical forests of the Florida Keys,” Plant and Soil, vol. 253, no. 2, pp. 479–492, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. C. L. Coultas, M. Schwadron, and J. M. Galbraith, “Petrocalcic horizon formation and prehistoric people's effect on Everglades tree island soils, Florida,” Soil Survey Horizons, vol. 49, pp. 16–21, 2008.
  23. P. E. Lemmon, “A spherical densitometer for estimating forest overstory density,” Forest Science, vol. 2, pp. 314–320, 1956.
  24. S. R. Englund, J. J. O'Brien, and D. B. Clark, “Evaluation of digital and film hemispherical photography and spherical densiometry for measuring forest light environments,” Canadian Journal of Forest Research, vol. 30, no. 12, pp. 1999–2005, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. C. W. Woodall, C. E. Fiedler, and K. S. Milner, “Stand density index in uneven-aged ponderosa pine stands,” Canadian Journal of Forest Research, vol. 33, no. 1, pp. 96–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. ESRI, Using ArcMap: ArcGIS 9, ESRI Press, Redlands, Calif, USA, 2004.
  27. A. J. Larson, J. A. Lutz, R. F. Gersonde, J. F. Franklin, and F. F. Hietpas, “Potential site productivity influences the rate of forest structural development,” Ecological Applications, vol. 18, no. 4, pp. 899–910, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. P. Sah, “Vegetation structure and composition in relation to the hydrological and soil environments in tree islands of Shark Slough,” in Tree Islands in the Shark Slough Landscape: Interactions of Vegetation, Hydrology, and Soils, M. S. Ross and D. T. Jones, Eds., Final Report to Everglades National Park on Study EVER 00075, p. 183, 2004, http://digitalcommons.fiu.edu/sercrp/42004.
  29. P. S. White and J. L. Walker, “Approximating nature's variation: selecting and using reference information in restoration ecology,” Restoration Ecology, vol. 5, no. 4, pp. 338–349, 1997. View at Scopus
  30. K. W. Outcalt, “An old-growth definition for tropical and subtropical forests in Florida,” General Technical Report SRS-13, p. 8, U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, USA, 1997.
  31. K. S. McCann, “The diversity-stability,” Nature, vol. 405, no. 6783, pp. 228–233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Aussenac, “Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture,” Annals of Forest Science, vol. 57, no. 3, pp. 287–301, 2000. View at Scopus
  33. P. M. Vitousek and R. L. Sanford Jr., “Nutrient cycling in moist tropical forest,” Annual Review of Ecology and Systematics, vol. 17, pp. 137–167, 1986.