About this Journal Submit a Manuscript Table of Contents
International Journal of Forestry Research
Volume 2010 (2010), Article ID 836278, 7 pages
Research Article

Adverse Influence of Radio Frequency Background on Trembling Aspen Seedlings: Preliminary Observations

P.O. Box 553, Lyons, CO 80540, USA

Received 21 June 2009; Revised 31 October 2009; Accepted 17 February 2010

Academic Editor: Terry L. Sharik

Copyright © 2010 Katie Haggerty. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. J. Basham, “Decay of trembling aspen,” Canadian Journal of Botany, vol. 36, pp. 491–505, 1958.
  2. J. H. Stoeckler, “Soil factors affecting the growth of trembling aspen forests in the lake states,” University of Minnesota Agricultural Experiment Station Technical Bulletin, vol. 233, 1960.
  3. D. L. Bartos, “Landscape dynamics of aspen and conifer forests,” in Proceedings of the Sustaining Aspen in Western Landscapes Symposium, USDA Forest Service Proceedings RMRS-P-18, pp. 5–14, June 2000.
  4. T. T. Kozlowski, “Responses of woody plants to flooding and salinity,” Tree Physiology Monograph no. 1, Heron Publishing, Victoria, British Colombia, Canada, 1997.
  5. X. Yao, S. J. Titus, and S. E. MacDonald, “A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mixedwood forests,” Canadian Journal of Forest Research, vol. 31, no. 2, pp. 283–291, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. W. J. Shields Jr. and J. G. Bockheim, “Deterioration of aspen clones in the Great lakes Region,” Canadian Journal of Forest Research, vol. 11, pp. 530–537, 1981.
  7. B. R. Frey, V. J. Lieffers, E. H. Hogg, and S. M. Landhausser, “Predicting landscape patterns of aspen dieback: mechanisms and knowledge gaps,” Canadian Journal of Forest Research, vol. 34, no. 7, pp. 1379–1390, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. M. Cox and J. W. Malcolm, “Effects of duration of a simulated winter thaw on dieback and xylem conductivity of Betula papyrifera,” Tree Physiology, vol. 17, no. 6, pp. 389–396, 1997. View at Scopus
  9. E. H. Hogg, “Simulation of interannual responses of trembling aspen stands to climatic variation and insect defoliation in western Canada,” Ecological Modelling, vol. 114, no. 2-3, pp. 175–193, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. J. J. Worrall, L. Egeland, T. Eager, et al., “Rapid mortality of Populus tremuloides in southwestern Colorado, USA,” Forest Ecology and Management, vol. 255, no. 3-4, pp. 686–696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Vince-Prue, “The duration of light and photoperiodic responses,” in Photomorphogenisis in Plants, pp. 447–490, Kulwer Academic Publishers, 2nd edition, 1994.
  12. O. Bjorkman, “Responses to different quantum flux densities,” in Encyclopedia of Plant Physiology, New Series, P. S. Lange, P. S. Nobel, C. B. Osmond, and H. Zeiger, Eds., vol. 12A, pp. 57–107, Springer, Berlin, Germany, 1991.
  13. A. L. Mancinelli, “The physiology of phytochrome action,” in Photomorphogenisis in Plants, pp. 211–269, Kluwer Academic Publishers, 2nd edition, 1994.
  14. N. M. Maslin, HF Communications, a Systems Approach, Plenum Press, New York, NY, USA, 1987.
  15. F. H. Sanders, B. J. Ramsey, and V. S. Lawrence, “Broadband spectrum survey at Los Angeles, California,” NTIA Report 97-336, 1997.
  16. H. Berg, “Problems of weak electromagnetic field effects in cell biology,” Bioelectrochemistry and Bioenergetics, vol. 48, no. 2, pp. 355–360, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Y. Petrov, T. V. Moiseeva, and E. V. Morozova, “Possibility of correction of vital processes in plant cell with microwave radiation,” in Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, pp. 234–235, December 1991.
  18. A. Berg and H. Berg, “Influence of ELF sinusoidal electromagnetic fields on proliferation and metabolite yield of fungi,” Electromagnetic Biology and Medicine, vol. 25, no. 1, pp. 71–77, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. M. Tafforeau, M.-C. Verdus, V. Norris, et al., “Plant sensitivity to low intensity 105 GHz electromagnetic radiation,” Bioelectromagnetics, vol. 25, no. 6, pp. 403–407, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. M. B. Bitonti, S. Mazzuca, T. Ting, and A. M. Innocenti, “Magnetic field affects meristem activity and cell differentiation in Zea mays roots,” Plant Biosystems, vol. 140, no. 1, pp. 87–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Wawrecki and B. Zagorska-Marek, “Influence of a weak DC electric field on root meristem architecture,” Annals of Botany, vol. 100, no. 4, pp. 791–796, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. D. Roux, A. Vian, S. Girard, et al., “Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants,” Physiologia Plantarum, vol. 128, no. 2, pp. 283–288, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Engelmann, W. Hellrung, and A. Johnsson, “Circadian locomotor activity of Musca flies: recording method and effects of 10 Hz square-wave electric fields,” Bioelectromagnetics, vol. 17, no. 2, pp. 100–110, 1996. View at Scopus
  24. T. D. Xie, P. Marszalek, Y.-D. Chen, and T. Y. Tsong, “Recognition and processing of randomly fluctuating electric signals by Na,K-ATPase,” Biophysical Journal, vol. 67, no. 3, pp. 1247–1251, 1994. View at Scopus
  25. W. D. Sheppard, “Initial growth, development, and clonal dynamics of regenerated aspen in the Rocky Mountains,” Tech. Rep. Research Paper RM-312, USDA Forest Service, 1999.
  26. W. A. Hoch, E. L. Singsaas, and B. H. McCown, “Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels,” Plant Physiology, vol. 133, no. 3, pp. 1296–1305, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. F. S. Chapin III and L. Moilanen, “Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves,” Ecology, vol. 72, no. 2, pp. 709–715, 1991. View at Scopus
  28. L. Cheng and L. H. Fuchigami, “Growth of young apple trees in relation to reserve nitrogen and carbohydrates,” Tree Physiology, vol. 22, no. 18, pp. 1297–1303, 2002. View at Scopus
  29. R. D. Ekers and J. F. Bell, “Radio frequency interference,” ATNF CSIRO, http://arxiv.org/abs/astro-ph/0002515v1.
  30. P. D. Manion, Tree Disease Concepts, Prentice-Hall, Englewood Cliffs, NJ, USA, 2nd edition, 1991.
  31. J. M. Klap, J. H. Oude Voshaar, W. De Vries, and J. W. Erisman, “Effects of environmental stress on forest crown condition in Europe—part IV: statistical analysis of relationships,” Water, Air, and Soil Pollution, vol. 119, no. 1–4, pp. 387–420, 2000.
  32. S. B. McLaughlin, D. J. Downing, T. J. Blasing, E. R. Cook, and H. S. Adams, “An analysis of climate and competition as contributors to decline of red spruce in high elevation Appalachian forests of the Eastern United states,” Oecologia, vol. 72, no. 4, pp. 487–501, 1987. View at Publisher · View at Google Scholar
  33. F. Biondi and J. E. Fessenden, “Response of lodgepole pine growth to CO2 degassing at Mammoth Mountain, California,” Ecology, vol. 80, no. 7, pp. 2420–2426, 1999.
  34. P. G. Schaberg, P. E. Hennon, D. V. D'Amore, and G. J. Hawley, “Influence of simulated snow cover on the cold tolerance and freezing injury of yellow-cedar seedlings,” Global Change Biology, vol. 14, no. 6, pp. 1282–1293, 2008. View at Publisher · View at Google Scholar
  35. P. J. van Mantgem, N. L. Stephenson, J. C. Byrne, et al., “Widespread increase of tree mortality rates in the Western United States,” Science, vol. 323, no. 5913, pp. 521–524, 2009. View at Publisher · View at Google Scholar · View at PubMed