About this Journal Submit a Manuscript Table of Contents
International Journal of Forestry Research
Volume 2012 (2012), Article ID 340865, 13 pages
http://dx.doi.org/10.1155/2012/340865
Research Article

Energy-Based Evaluations on Eucalyptus Biomass Production

1College of Agriculture “Luiz de Queiroz” (ESALQ), University of Sao Paulo (USP), Avenida Padua Dias 11 C.P.9, 13418-900 Piracicaba, SP, Brazil
2Graduate Program in Engineering of Agricultural Systems, College of Agriculture “Luiz de Queiroz” (ESALQ), University of Sao Paulo (USP), Avenida Padua Dias 11 C.P.9, 13418-900 Piracicaba, SP, Brazil

Received 13 July 2012; Revised 21 September 2012; Accepted 30 October 2012

Academic Editor: Brian C. McCarthy

Copyright © 2012 Thiago L. Romanelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. ABRAF, Statistical Year book of the Brazilian Association of Planted Forest Producers 2009, ABRAF, Brasília, Brazil, 2009.
  2. V. Tellarini and F. Caporali, “An input/output methodology to evaluate farms as sustainable agroecosystems: an application of indicators to farms in central Italy,” Agriculture, Ecosystems and Environment, vol. 77, no. 1-2, pp. 111–123, 2000. View at Publisher · View at Google Scholar
  3. T. L. Romanelli and M. Milan, “Energy balance methodology and modeling of supplementary forage production for cattle in Brazil,” Scientia Agricola, vol. 62, no. 1, pp. 1–7, 2005.
  4. C. A. S. Hall, “The myth of sustainable development: personal reflections on energy, its relation to neoclassical economics, and Stanley Jevons,” Journal of Energy Resources Technology, vol. 126, no. 2, pp. 85–89, 2004. View at Publisher · View at Google Scholar
  5. R. Hammerschlag, “Ethanol's energy return on investment: a survey of the literature 1990—Present,” Environmental Science and Technology, vol. 40, no. 6, pp. 1744–1750, 2006. View at Publisher · View at Google Scholar
  6. H. T. Odum, Environmental Accounting: Emergy and Decision Making, John Wiley & Sons, New York, NY, USA, 1996.
  7. H. T. Odum, S. J. Doherty, F. N. Scatena, and P. A. Kharecha, “Emergy evaluation of reforestation alternatives in Puerto Rico,” Forest Science, vol. 46, no. 4, pp. 521–530, 2000.
  8. D. R. Tilley and W. T. Swank, “EMERGY-based environmental systems assessment of a multi-purpose temperate mixed-forest watershed of the southern Appalachian Mountains, USA,” Journal of Environmental Management, vol. 69, no. 3, pp. 213–227, 2003. View at Publisher · View at Google Scholar
  9. T. L. Romanelli, M. J. Cohen, M. Milan, and M. T. Brown, “Emergy synthesis of intensive eucalyptus cultivation in São Paolo, Brazil,” Forest Science, vol. 54, no. 2, pp. 228–241, 2008.
  10. T. L. Romanelli, H. D. S. Nardi, and F. A. Saad, “Material embodiment and energy flows as efficiency indicators of soybean (Glycine max) production in Brazil,” Engenharia Agrícola, vol. 32, no. 2, pp. 261–270, 2012. View at Publisher · View at Google Scholar
  11. T. L. Romanelli and M. Milan, “Material flow determination through agricultural machinery management,” Scientia Agricola, vol. 67, no. 4, pp. 375–383, 2010.
  12. A. P. Souza, L. J. Minette, F. M. T. Moreira, C. C. Machado, and K. R. Silva, “Performance of slingshot machine in harvest sub-system for eucalyptus Forest,” Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 8, no. 2-3, pp. 316–320, 2004 (Portuguese).
  13. A. Lopes, K. P. Lanças, C. E. A. Furlani, A. K. Nagaoka, P. Castro Neto, and D. C. C. Grotta, “Fuel consumption of the tractor as a function tire type, ballasting and forward speed,” Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 7, no. 2, pp. 382–386, 2003 (Portuguese).
  14. M. T. Brown and S. Ulgiati, “Emergy-based indices and ratios to evaluate sustainability: monitoring economies and technology toward environmentally sound innovation,” Ecological Engineering, vol. 9, no. 1-2, pp. 51–69, 1997. View at Publisher · View at Google Scholar
  15. S. J. Doherty, P. O. Nilsson, and H. T. Odum, “Emergy evaluation of forest production and industries in Sweden,” Research Report, Bioenergy Department, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2002.
  16. C. Hall, P. Tharakan, J. Hallock, C. Cleveland, and M. Jefferson, “Hydrocarbons and the evolution of human culture,” Nature, vol. 426, no. 6964, pp. 318–322, 2003. View at Publisher · View at Google Scholar
  17. T. L. Romanelli and M. Milan, “Energy performance of a production system of eucalyptus,” Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 14, no. 8, pp. 896–903, 2010.
  18. O. Cavalett, J. F. D. Queiroz, and E. Ortega, “Emergy assessment of integrated production systems of grains, pig and fish in small farms in the South Brazil,” Ecological Modelling, vol. 193, no. 3-4, pp. 205–224, 2006. View at Publisher · View at Google Scholar
  19. A. C. I. Pizzigallo, C. Granai, and S. Borsa, “The joint use of LCA and emergy evaluation for the analysis of two Italian wine farms,” Journal of Environmental Management, vol. 86, no. 2, pp. 396–406, 2008. View at Publisher · View at Google Scholar
  20. J. E. Mattsson, “Energy of forest machines in Swedish forestry as a whole,” in Seminar on Energy Aspects of the Forest Industries, pp. 321–330, Pergamon Press, Oxford, UK, 1979.
  21. S. Berg and E.-L. Lindholm, “Energy use and environmental impacts of forest operations in Sweden,” Journal of Cleaner Production, vol. 13, no. 1, pp. 33–42, 2005. View at Publisher · View at Google Scholar
  22. M. T. Brown and E. Bardi, Handbook of Emergy Evaluation Folio 3: Emergy of Ecosystems, Center for Environmental Policy, University of Florida, Gainesville, Fla, USA, 2001.
  23. M. J. Cohen, M. T. Brown, and K. D. Shepherd, “Estimating the environmental costs of soil erosion at multiple scales in Kenya using emergy synthesis,” Agriculture, Ecosystems and Environment, vol. 114, no. 2–4, pp. 249–269, 2006. View at Publisher · View at Google Scholar
  24. S. J. Doherty, Emergy evaluations and limits to forest production [Ph.D. dissertation], University of Florida, Gainesville, Fla, USA, 1995.
  25. S. Brandt-Williams, Handbook of Emergy Evaluation Folio 4: Emergy of Florida Agriculture, Center for Environmental Policy, University of Florida, Gainesville, Fla, USA, 2002.
  26. D. J. Mead and D. Pimentel, “Use of energy analyses in silvicultural decision-making,” Biomass and Bioenergy, vol. 30, no. 4, pp. 357–362, 2006. View at Publisher · View at Google Scholar
  27. P. Hakkila and M. Parikka, “Fuel resources from the forest,” in Bioenergy from Sustainable Forestry: Guiding Principles and Practice, J. Richardson, R. Björheden, P. Hakkila, A. T. Lowe, and C. T. Smith, Eds., pp. 19–48, Kluwer Academic, Dodrecht, The Netherlands, 2002.
  28. V. Benedetti, “Use of the industrial residues at S. A. Ripasa and paper as inputs in the forest production,” in Seminar About Use of the Industrial and Urban Residues in Forest, I. A. Guerrini, A. F. J. Bellote, and L. T. Büll, Eds., pp. 141–154, UNESP, Botucatu, Brazil, 1994.
  29. A. Franco, C. H. Abreu Junior, D. Perecin, F. C. Oliveira, A. C. R. Granja, and V. S. Braga, “Sewage sludge as nitrogen and phosphorus source for cane-plant and first ratoon crops,” Revista Brasileira de Ciencia do Solo, vol. 34, no. 2, pp. 553–561, 2010 (Portuguese).
  30. M. T. Brown and S. Ulgiati, “Emergy evaluations and environmental loading of electricity production systems,” Journal of Cleaner Production, vol. 10, no. 4, pp. 321–334, 2002. View at Publisher · View at Google Scholar
  31. F. J. Pierce and P. Nowak, “Aspects of precision agriculture,” Advances in Agronomy, vol. 67, pp. 1–85, 1999. View at Publisher · View at Google Scholar
  32. M. T. Brown and R. A. Herendeen, “Embodied energy analysis and EMERGY analysis: a comparative view,” Ecological Economics, vol. 19, no. 3, pp. 219–235, 1996. View at Publisher · View at Google Scholar