About this Journal Submit a Manuscript Table of Contents
International Journal of Forestry Research
Volume 2012 (2012), Article ID 680246, 9 pages
http://dx.doi.org/10.1155/2012/680246
Research Article

Evaluating Potential Changes in Fire Risk from Eucalyptus Plantings in the Southern United States

Center for Forest Disturbance Science, USDA Forest Service, 320 Green Street, Athens, GA 30602, USA

Received 19 July 2012; Revised 23 November 2012; Accepted 29 November 2012

Academic Editor: Matias Kirst

Copyright © 2012 Scott L. Goodrick and John A. Stanturf. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Stanturf, R. C. Kellison, F. S. Broerman, and S. B. Jones, “Productivity of southern pine plantations: where are we and how did we get here?” Journal of Forestry, vol. 101, no. 3, pp. 26–31, 2003. View at Scopus
  2. D. M. Wear and J. Greis, Eds., The Southern Forest Resource Assessment, General Technical Report SRS-53, USDA Forest Service, Asheville, NC, USA, 2002.
  3. R. D. Perlack and B. J. Stokes, “US billion-ton update: biomass supply for a bioenergy and bioproducts industry,” Tech. Rep. ORNL/TM-2011/224, US Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tenn, USA, 2011.
  4. R. S. Zalesny, M. W. Cunningham, R. B. Hall et al., Woody Biomass from Short Rotation Energy Crops, American Chemical Society, Washington, DC, USA, 2011.
  5. M. Hinchee, W. Rottmann, L. Mullinax et al., “Short-rotation woody crops for bioenergy and biofuels applications,” In Vitro Cellular and Developmental Biology—Plant, vol. 45, no. 6, pp. 619–629, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Dougherty and J. Wright, “Silviculture and economic evaluation of eucalypt plantations in the Southern US,” BioResources, vol. 7, pp. 1994–2001, 2012.
  7. R. Gonzalez, T. Treasure, J. Wright et al., “Exploring the potential of Eucalyptus for energy production in the Southern United States: financial analysis of delivered biomass—part I,” Biomass and Bioenergy, vol. 35, no. 2, pp. 755–766, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Gonzalez, T. Treasure, R. Phillips et al., “Converting Eucalyptus biomass into ethanol: financial and sensitivity analysis in a co-current dilute acid process—part II,” Biomass and Bioenergy, vol. 35, no. 2, pp. 767–772, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Pirraglia, R. Gonzalez, D. Saloni, J. Wright, and J. Denig, “Fuel properties and suitability of Eucalyptus benthamii and Eucalyptus macarthurii for torrefied wood and pellets,” BioResources, vol. 7, pp. 217–235, 2011.
  10. C. L. Riccardi, R. D. Ottmar, D. V. Sandberg et al., “The fuelbed: a key element of the fuel characteristic classification system,” Canadian Journal of Forest Research, vol. 37, no. 12, pp. 2394–2412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. D. Ottmar, D. V. Sandberg, C. L. Riccardi, and S. J. Prichard, “An overview of the fuel characteristic classification system—quantifying, classifying, and creating fuelbeds for resource planning,” Canadian Journal of Forest Research, vol. 37, no. 12, pp. 2383–2393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. R. L. Myers, Living with Fire-Sustaining Ecosystems & Livelihoods through Integrated Fire Management, Global Fire Initiative, The Nature Conservancy, Tallahassee, Fla, USA, 2006.
  13. C. Fowler and E. Konopik, “The history of fire in the Southern United States,” Human Ecology Review, vol. 14, no. 2, pp. 165–176, 2007. View at Scopus
  14. J. A. Stanturf, D. D. Wade, T. A. Waldrop, D. K. Kennard, and G. L. Achtemeier, “Fires in southern forest landscapes,” in The Southern Forest Resource Assessment, D. M. Wear and J. Greis, Eds., General Technical Report SRS-53, chapter 25, pp. 607–630, USDA Forest Service, Asheville, NC, USA, 2002.
  15. D. D. Wade, B. L. Brock, P. H. Brose, J. B. Grace, G. A. Hoch, and W. A. Patterson III, “Fire in eastern ecosystems,” in Wildland Fire in Ecosystems: Effects of Fire on Flora, J. K. Brown and J. K. Smith, Eds., General Technical Report RMRS-42, pp. 53–96, USDA Forest Service, Ogden, Utah, USA, 2000.
  16. R. K. Myers and D. H. Van Lear, “Hurricane-fire interactions in coastal forests of the south: a review and hypothesis,” Forest Ecology and Management, vol. 103, no. 2-3, pp. 265–276, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. T. A. Waldrop and S. L. Goodrick, Introduction to Prescribed Fires in Southern Ecosystems, Science Update SRS-054, USDA Forest Service, Asheville, NC, USA, 2012.
  18. M. Gramley, Fire in the South: A Report by the Southern Group of State Foresters, Southern Group of State Foresters, Winder, Ga, USA, 2005, http://216.226.177.78/PDFs/fire_in_the_south.pdf.
  19. Southern Group of State Foresters, “Fire in the South 2,” 2008, http://www.southernwildfirerisk.com/reports/FireInTheSouth2.pdf.
  20. R. Seager, A. Tzanova, and J. Nakamura, “Drought in the Southeastern United States: causes, variability over the last millennium, and the potential for future hydroclimate change,” Journal of Climate, vol. 22, no. 19, pp. 5021–5045, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. N. Wear, Forecasts of county-level land uses under three future scenarios: a technical document supporting the Forest Service 2010 RPA assessment, General Technical Report SRS-141, USDA Forest Service, Asheville, NC, USA, 2011.
  22. D. M. Theobald and W. H. Romme, “Expansion of the US wildland-urban interface,” Landscape and Urban Planning, vol. 83, no. 4, pp. 340–354, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. D. M. Wear and J. Greis, Eds., Southern Forest Futures Project Technical Report, General Technical Report SRS-XX, USDA Forest Service, Asheville, NC, USA, In Press.
  24. J. P. Prestemon and D. T. Butry, “Time to burn: modeling wildland arson as an autoregressive crime function,” American Journal of Agricultural Economics, vol. 87, no. 3, pp. 756–770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. P. Prestemon, J. M. Pye, D. T. Butry, T. P. Holmes, and D. E. Mercer, “Understanding broadscale wildfire risks in a human-dominated landscape,” Forest Science, vol. 48, no. 4, pp. 685–693, 2002. View at Scopus
  26. C. J. Gaither, N. C. Poudyal, S. Goodrick, J. M. Bowker, S. Malone, and J. Gan, “Wildland fire risk and social vulnerability in the Southeastern United States: an exploratory spatial data analysis approach,” Forest Policy and Economics, vol. 13, no. 1, pp. 24–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. J. A. Stanturf and S. L. Goodrick, “Fire,” in Southern Forest Futures Project Technical Report, D. M. Wear and J. Greis, Eds., General Technical Report SRS-XX, chapter 17, USDA Forest Service, Asheville, NC, USA, In Press.
  28. Y. Liu, J. Stanturf, and S. Goodrick, “Trends in global wildfire potential in a changing climate,” Forest Ecology and Management, vol. 259, no. 4, pp. 685–697, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Q. Liu, S. L. Goodrick, and J. A. Stanturf, “Future U.S. wildfire potential trends projected using a dynamically downscaled climate change scenario,” Forest Ecology and Management. In Press. View at Publisher · View at Google Scholar
  30. P. de Mar and D. Adshead, “Blue gum plantation fuel and fire behavior guide,” 2011, http://www.ghd.com/PDF/BlueGumFuelandFireGuide.pdf.
  31. J. S. Gould, W. L. McCaw, N. P. Cheney, P. E. Ellis, and S. Matthews, Field Guide- Fuel Assessment and Fire Behaviour Prediction in Dry Eucalypt Forest, Ensis-CSIRO, Canberra, Australia; Department of Environment and Conservation, Perth, Australia, 2007.
  32. D. V. Sandberg, C. L. Riccardi, and M. D. Schaaf, “Fire potential rating for wildland fuelbeds using the fuel characteristic classification system,” Canadian Journal of Forest Research, vol. 37, no. 12, pp. 2456–2463, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. R. C. Rothermel, A Mathematical Model for Predicting Fire Spread in Wildland Fuels, General Technical Report INT-115, USDA Forest Service, 1972.
  34. D. V. Sandberg, C. L. Riccardi, and M. D. Schaaf, “Reformulation of Rothermel's wildland fire behaviour model for heterogeneous fuelbeds,” Canadian Journal of Forest Research, vol. 37, no. 12, pp. 2438–2455, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. D. Schaaf, D. V. Sandberg, and C. L. Riccardi, “A conceptual model of crown fire potential based on the reformulated Rothermel wildland fire behavior model,” Canadian Journal of Forest Research, vol. 37, pp. 2464–2478, 2007. View at Publisher · View at Google Scholar
  36. C. E. Van Wagner, “Conditions for the start and spread of crown fire,” Canadian Journal of Forest Research, vol. 7, pp. 23–34, 1977. View at Publisher · View at Google Scholar
  37. M. E. Alexander, Crown fire thresholds in exotic pine plantations of Australasia [Ph.D. thesis], Australian National University, Canberra, Australia, 1998.
  38. J. H. Scott and R. D. Reinhardt, “Assessing crown fire potential by linking models of surface and crown fire behavior,” Research Paper RP-RMRS-029, USDA Forest Service, 2001.
  39. S. J. Prichard, R. D. Ottmar, D. V. Sandberg, P. C. Eagle, A. G. Andreu, and K. Swedin, “FCCS User's Guide, version 2.2,” 2011, http://www.fs.fed.us/pnw/fera/fccs/fccs_2_2_user_guide.pdf.
  40. P. L. Andrews, C. D. Bevins, and R. C. Seli, “BehavePlus fire modeling system, version 4.0: user's guide,” General Technical Report RMRS-GTR-106, Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, Utah, USA, 2005.
  41. M. E. D. Poore and C. Fries, “The ecological effects of Eucalyptus,” Forestry Paper 59, FAO, Rome, Italy, 1985.
  42. J. S. Gould, W. L. McCaw, N. P. Cheney, P. E. Ellis, I. K. Knight, and A. L. Sullivan, Project Vesta. Fire in Dry Eucalypt Forest: Fuel Structure, Fuel Dynamics, and Fire Behaviour, Ensis-CSIRO, Canberra, Australia; Department of Environment and Conservation, Perth, Australia, 2007.
  43. D. Buckley, J. K. Berry, T. Spencer, and D. Carlton, “Quantifying wildland fire risk in the South,” 2006, http://www.southernwildfirerisk.com/downloads_reports/Sanborn%20-%20Quantifying_Wildland_Fire_Risk_in_South.pdf.
  44. N. P. Cheney, J. S. Gould, W. L. McCaw, and W. R. Anderson, “Predicting fire behaviour in dry eucalypt forest in southern Australia,” Forest Ecology and Management, vol. 280, pp. 120–131, 2012. View at Publisher · View at Google Scholar
  45. N. D. Burrows, Experimental development of a fire management model for Jarrah (Eucalyptus marginata) forest [Ph.D. thesis], Department of Forestry, Australian National University, Canberra, Australia, 1994.
  46. N. D. Burrows, “Fire behaviour in jarrah forest fuels: 2. Field experiments,” CALMScience, vol. 3, no. 1, pp. 57–84, 1999. View at Scopus
  47. R. Rawson, P. Billing, and S. Duncan, “The 1982-83 forest fires in Victoria,” Australian Forestry, vol. 46, pp. 163–172, 1983.
  48. F. Hines, K. G. Tolhurst, A. A. G. Wilson, and G. J. McCarthy, Overall Fuel Hazard Assessment Guide, Fire and Adaptive Management Report, no. 82, State of Victoria Government Department of Sustainability and Environment, Melbourne, Australia, 4th edition, 2010.
  49. P. F. M. Ellis, “Fuelbed ignition potential and bark morphology explain the notoriety of the eucalypt messmate ‘stringbark’ for intense spotting,” International Journal of Wildland Fire, vol. 20, pp. 897–907, 2011.