About this Journal Submit a Manuscript Table of Contents
International Journal of Forestry Research
Volume 2012 (2012), Article ID 891798, 10 pages
http://dx.doi.org/10.1155/2012/891798
Research Article

Biomass, Carbon and Nitrogen Distribution in Living Woody Plant Parts of Robinia pseudoacacia L. Growing on Reclamation Sites in the Mining Region of Lower Lusatia (Northeast Germany)

1Chair of Soil Protection and Recultivation, Brandenburg University of Technology, Konrad-Wachsmann-Allee 6, 03046 Cottbus, Germany
2GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, 14473 Potsdam, Germany

Received 28 October 2011; Accepted 18 March 2012

Academic Editor: Levente Denes

Copyright © 2012 Ansgar Quinkenstein et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. A. Geyer, “Biomass yield potential of short-rotation hardwoods in the great plains,” Biomass, vol. 20, no. 3-4, pp. 167–175, 1989. View at Scopus
  2. T. Strong, “Rotation length and repeated harvesting influence on Populus coppice production,” Tech. Rep. NC 350, USDA Forest Service, North Central Forest Experiment Station, 1989.
  3. C. Hofmann-Schielle, A. Jug, F. Makeschin, and K. E. Rehfuess, “Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. I. Site-growth relationships,” Forest Ecology and Management, vol. 121, no. 1-2, pp. 41–55, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Scholz and R. Ellerbrock, “The growth productivity, and environmental impact of the cultivation of energy crops on sandy soil in Germany,” Biomass and Bioenergy, vol. 23, no. 2, pp. 81–92, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. C. P. Mitchell, E. A. Stevens, and M. P. Watters, “Short-rotation forestry—operations, productivity and costs based on experience gained in the UK,” Forest Ecology and Management, vol. 121, no. 1-2, pp. 123–136, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Lindroth and A. Båth, “Assessment of regional willow coppice yield in Sweden on basis of water availability,” Forest Ecology and Management, vol. 121, no. 1-2, pp. 57–65, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. U. Penth, G. Milojcic, F. Hausmann, K. van de Loo, M. Chromik, and U. Maaßen, “Der Kohlenbergbau in der Energiewirtschaft der Bundesrepublik Deutschland im Jahre 2009,” Statistik der Kohlenwirtschaft e.V., 2010.
  8. R. Bungart and R. F. Hüttl, “Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey-sandy mining substrate with respect to plant nutrition and water budget,” European Journal of Forest Research, vol. 123, no. 2, pp. 105–115, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Gruenewald, B. K. V. Brandt, B. U. Schneider, O. Bens, G. Kendzia, and R. F. Hüttl, “Agroforestry systems for the production of woody biomass for energy transformation purposes,” Ecological Engineering, vol. 29, no. 4, pp. 319–328, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. E. F. Gilman and D. G. Watson, “Robinia pseudoacacia—Black locust,” United States Department of Agriculture (USDA) Forest Service, Fact Sheet ST-570, 1994.
  11. C. Waitkus and H. G. Richter, “Die Robinie und ihr Holz,” Bundesforschungsanstalt für Forst- und Holzwirtschaft (BFH), 2001.
  12. J. J. Balatinecz and D. E. Kretschmann, “Properties and utilization of poplar wood,” in Poplar Culture in North America, D. I. Dickmann, J. G. Isebrands, J. E. Eckenwalder, and J. Richardson, Eds., pp. 277–291, NRC Research Press, Ottawa, Canada, 2001.
  13. B. Klasnja, S. Kopitovic, and S. Orlovic, “Wood and bark of some poplar and willow clones as fuelwood,” Biomass and Bioenergy, vol. 23, no. 6, pp. 427–432, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Qiu, X. Zhang, J. Cheng, and X. Yin, “Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Plateau, China,” Plant and Soil, vol. 332, no. 1-2, pp. 207–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. A. N. Ussiri, R. Lal, and P. A. Jacinthe, “Soil properties and carbon sequestration of afforested pastures in reclaimed minesoils of Ohio,” Soil Science Society of America Journal, vol. 70, no. 5, pp. 1797–1806, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Montagnini, B. Haines, L. Boring, and W. Swank, “Nitrification potentials in early successional black locust and in mixed hardwood forest stands in the southern Appalachians, USA,” Biogeochemistry, vol. 2, no. 2, pp. 197–210, 1986. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Landgraf, S. Wedig, and S. Klose, “Medium- And short-term available organic matter, microbial biomass, and enzyme activities in soils under Pinus sylvestris L. and Robinia pseudoacacia L. in a sandy soil in NE Saxony, Germany,” Journal of Plant Nutrition and Soil Science, vol. 168, no. 2, pp. 193–201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. S. Olesniewicz and R. B. Thomas, “Effects of mycorrhizal colonization on biomass production and nitrogen fixation of black locust (Robinia pseudoacacia) seedlings grown under elevated atmospheric carbon dioxide,” New Phytologist, vol. 142, no. 1, pp. 133–140, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Tateno, N. Tokuchi, N. Yamanaka et al., “Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan'an on the Loess Plateau, China,” Forest Ecology and Management, vol. 241, no. 1–3, pp. 84–90, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. C. Lee, J. M. Nam, and J. G. Kim, “The influence of black locust (Robinia pseudoacacia) flower and leaf fall on soil phosphate,” Plant and Soil, vol. 341, no. 1-2, pp. 269–277, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Yüksek and F. Yüksek, “The effects of restoration on soil properties in degraded land in the semi-arid region of Turkey,” Catena, vol. 84, no. 1-2, pp. 47–53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Rahmonov, “The chemical composition of plant litter of black locust (Robinia pseudoacacia L.) and its ecological role in sandy ecosystems,” Acta Ecologica Sinica, vol. 29, no. 4, pp. 237–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. B. C. Bongarten, D. A. Huber, and D. K. Apsley, “Environmental and genetic influences on short-rotation biomass production of black locust (Robinia pseudoacacia L.) in the Georgia Piedmont,” Forest Ecology and Management, vol. 55, no. 1–4, pp. 315–331, 1992. View at Scopus
  24. R. M. Burns and B. H. Honkala, Silvics of North America: 2. Hardwoods, vol. 654 of Agriculture Handbook, U.S. Department of Agriculture, Forest Service, Washington, DC, USA, 1990.
  25. J. D. Zeleznik and J. G. Skousen, “Survival of three tree species on old reclaimed surface mines in Ohio,” Journal of Environmental Quality, vol. 25, no. 6, pp. 1429–1435, 1996. View at Scopus
  26. K. Rédei, I. Csiha, and Z. Keserü, “Black locust (Robinia pseudoacacia L.) short-rotation crops under marginal site conditions,” Acta Silvatica et Lignaria Hungarica, vol. 7, pp. 125–132, 2011.
  27. A. Quinkenstein, H. Jochheim, B. U. Schneider, and R. F. Hüttl, “Modellierung des Kohlenstoffhaushalts von Pappel-Kurzumtriebsplantagen in Brandenburg,” in Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen, T. Reeg, A. Bemmann, W. Konold, D. Murach, and H. Spiecker, Eds., pp. 193–203, Wiley-VCH, Weinheim, Germany, 2009.
  28. A. Quinkenstein, C. Böhm, E. Matos, D. Freese, and R. F. Hüttl, “Assessing the carbon sequestration in short rotation coppice systems of Robinia pseudoacacia on marginal sites in NE-Germany,” in Carbon Sequestration Potential of Agroforestry Systems, B. M. Kumar and P. K. R. Nair, Eds., vol. 8, Advances in Agroforestry, Springer, 2011.
  29. J. Katzur and M. Haubold-Rosar, “Amelioration and reforestation of sulfurous mine soils in Lusatia (Eastern Germany),” Water, Air, and Soil Pollution, vol. 91, no. 1-2, pp. 17–32, 1996. View at Scopus
  30. L. Kutschera and E. Lichtenegger, Wurzelatlas Mitteleuropäischer Waldbäume und Sträucher, Leopold Stocker, Graz, Austria, 2002.
  31. A. G. Bengough, A. Castrignano, L. Pages, and M. van Noordwijk, “Sampling strategies, scaling, and statistics,” in Root Methods: A Handbook, A. L. Smit, A. G. Bengough, C. Engels, M. van Noordwijk, S. van de Pellerin, and S. C. Geijn, Eds., pp. 147–173, Springer, Berlin, Germany, 2000.
  32. R. Ihaka and R. Gentleman, “R: a language for data analysis and graphics,” Journal of Computational and Graphical Statistics, vol. 5, no. 3, pp. 299–314, 1996. View at Scopus
  33. H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables is stochastically larger than the other,” Annals of Mathematical Statistics, vol. 18, no. 1, pp. 50–60, 1947. View at Publisher · View at Google Scholar
  34. H. Grünewald, C. Böhm, A. Quinkenstein, P. Grundmann, J. Eberts, and G. von Wühlisch, “Robinia pseudoacacia L.: a lesser known tree species for biomass production,” Bioenergy Research, vol. 2, no. 3, pp. 123–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Böhm, A. Quinkenstein, D. Freese, and R. F. Hüttl, “Wachstumsverlauf von vierjährigen Robinien,” AFZ-DerWald, vol. 10, pp. 532–533, 2009. View at Scopus
  36. K. Peters, G. Bilke, and B. Strohbach, “Ertragsleistung sechsjähriger Robinien (Robinia pseudoacacia) auf vier ehemaligen Ackerstandorten unterschiedlicher Bodengüte in Brandenburg,” Archiv für Forstwesen und Landschaftsökologie, vol. 41, pp. 26–28, 2007.
  37. D. I. Dickmann, K. Steinbeck, and T. Skinner, “Leaf area and biomass in mixed and pure plantations of sycamore and black locust in the Georgia Piedmont,” Forest Science, vol. 31, no. 2, pp. 509–517, 1985. View at Scopus
  38. D. W. Cole and M. Rapp, “Elemental cycling in forest ecosystems,” in Dynamic Properties of Forest Ecosystems, D. Reichle, Ed., vol. 23, pp. 341–409, International Biological Programme Synthesis, Cambridge University Press, Malta, 1981.
  39. H.-S. Helmisaari, K. Makkonen, S. Kellomäki, E. Valtonen, and E. Mälkönen, “Below- and above-ground biomass, production and nitrogen use in Scots pine stands in eastern Finland,” Forest Ecology and Management, vol. 165, no. 1–3, pp. 317–326, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Dušek and J. Květ, “Seasonal dynamics of dry weight, growth rate and root/shoot ratio in different aged seedlings of Salix caprea,” Biologia, vol. 61, no. 4, pp. 441–447, 2006. View at Scopus
  41. L. R. Boring and W. T. Swank, “The role of black locust (Robinia pseudoacacia) in forest succession,” Journal of Ecology, vol. 72, no. 3, pp. 749–766, 1984. View at Scopus
  42. M. D. Coleman, A. L. Friend, and C. C. Kern, “Carbon allocation and nitrogen acquisition in a developing Populus deltoides plantation,” Tree Physiology, vol. 24, no. 12, pp. 1347–1357, 2004. View at Scopus
  43. M. Liberloo, C. Calfapietra, M. Lukac et al., “Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world,” Global Change Biology, vol. 12, no. 6, pp. 1094–1106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. R.-M. Rytter, “Biomass production and allocation, including fine-root turnover, and annual N uptake in lysimeter-grown basket willows,” Forest Ecology and Management, vol. 140, no. 2-3, pp. 177–192, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. K. J. Nadelhoffer, “The potential effects of nitrogen deposition on fine-root production in forest ecosystems,” New Phytologist, vol. 147, no. 1, pp. 131–139, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. K. H. Johnsen and B. C. Bongarten, “Relationships between nitrogen fixation and growth in Robinia pseudoacacia seedlings: a functional growth-analysis approach using 15N,” Physiologia Plantarum, vol. 85, no. 1, pp. 77–84, 1992. View at Publisher · View at Google Scholar
  47. E.-D. Schulze, “Biological control of the terrestrial carbon sink,” Biogeosciences, vol. 3, no. 2, pp. 147–166, 2006. View at Scopus
  48. H. G. Adegbidi, T. A. Volk, E. H. White, L. P. Abrahamson, R. D. Briggs, and D. H. Bickelhaupt, “Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York state,” Biomass and Bioenergy, vol. 20, no. 6, pp. 399–411, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. P. J. Tharakan, T. A. Volk, L. P. Abrahamson, and E. H. White, “Energy feedstock characteristics of willow and hybrid poplar clones at harvest age,” Biomass and Bioenergy, vol. 25, no. 6, pp. 571–580, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Bungart and R. F. Hüttl, “Production of biomass for energy in post-mining landscapes and nutrient dynamics,” Biomass and Bioenergy, vol. 20, no. 3, pp. 181–187, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. L. R. Boring and W. T. Swank, “Symbiotic nitrogen fixation in regenerating black locust (Robinia pseudoacacia L.) stands,” Forest Science, vol. 30, no. 2, pp. 528–537, 1984. View at Scopus
  52. S. K. A. Danso, F. Zapata, and K. O. Awonaike, “Measurement of biological N2 fixation in field-grown Robinia pseudoacacia L,” Soil Biology and Biochemistry, vol. 27, no. 4-5, pp. 415–419, 1995. View at Scopus
  53. J. P. Vimmerstedt, M. C. House, M. M. Larson, J. D. Kasile, and B. L. Bishop, “Nitrogen and Carbon accretion on Ohio coal minesoils: Influence of soil-forming factors,” Landscape and Urban Planning, vol. 17, no. 2, pp. 99–111, 1989. View at Scopus
  54. S. M. Uselman, R. G. Qualls, and R. B. Thomas, “A test of a potential short cut in the nitrogen cycle: the role of exudation of symbiotically fixed nitrogen from the roots of a N-fixing tree and the effects of increased atmospheric CO2 and temperature,” Plant and Soil, vol. 210, no. 1, pp. 21–32, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Berthold, T. Vor, and F. Beese, “Soil degradation by Black locust (Robinia pseudoacacia L.),” in Biological Invasions—from Ecology to Control, W. Nentwig, S. Bacher, M. Cock, H. J. Dietz, A. Gigon, and R. Wittenberg, Eds., pp. 67–78, Neobiota 6, Berlin, Germany, 2005.
  56. S. Goldacker, D. Berthold, F. Beese, et al., “Bodenversauerung unter Robinie—Potenzielle Ursache von Wachstumsminderungen?” AFZ Der Wald, vol. 19, pp. 1003–1006, 2002.
  57. B. H. Svensson and R. Söderlund, Eds., “Nitrogen, phosphorus and sulphur-global cycles,” SCOPE Report 7, p. 192, Scientific Committee on Problems of the Environment (SCOPE), Stockholm, Sweden, Ecological Bulletins no. 22, 1975.
  58. P. Ntayombya and A. M. Gordon, “Effects of black locust on productivity and nitrogen nutrition of intercropped barley,” Agroforestry Systems, vol. 29, no. 3, pp. 239–254, 1995. View at Publisher · View at Google Scholar · View at Scopus
  59. E. S. Matos, D. Freese, C. Böhm, A. Quinkenstein, and R. F. Hüttl, “Organic matter dynamics in reclaimed lignite mine soils under Robinia pseudoacacia L. plantations of different ages in Germany,” Communications in Soil Science and Plant Analysis, vol. 43, no. 5, pp. 745–755, 2012. View at Publisher · View at Google Scholar
  60. A. Quinkenstein, C. Böhm, and D. Freese, “Zurück auf Los,” DLZ Agrar Magazin, vol. 7, pp. 50–51, 2010.