About this Journal Submit a Manuscript Table of Contents
International Journal of Forestry Research
Volume 2012 (2012), Article ID 908465, 8 pages
http://dx.doi.org/10.1155/2012/908465
Research Article

Forest Plantations and Water Consumption: A Strategy for Hydrosolidarity

1Department of Forest Science, University of São Paulo, 13400-970 Piracicaba, SP, Brazil
2International Paper do Brasil, Forest Management and Sustainability System, 13840-970 Mogi Guaçu, SP, Brazil
3Institute of Forest Research and Studies (IPEF), Catchment Monitoring Program (PROMAB), 13400-970 Piracicaba, SP, Brazil
4Department of Forest Science, Laboratory of Forest Hydrology, University of São Paulo, 13400-970 Piracicaba, SP, Brazil

Received 11 July 2011; Revised 13 October 2011; Accepted 21 November 2011

Academic Editor: John Sessions

Copyright © 2012 W. P. Lima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Falkenmark and C. Folke, “The ethics of socio-ecohydrological catchment management: towards hydrosolidarity,” Hydrology and Earth System Sciences, vol. 6, no. 1, pp. 1–9, 2002. View at Scopus
  2. A. I. J. M. van Dijk and R. J. Keenan, “Planted forests and water in perspective,” Forest Ecology and Management, vol. 251, no. 1-2, pp. 1–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. A. Rodríguez-Suárez, B. Soto, R. Perez, and F. Diaz-Fierros, “Influence of Eucalyptus globulus plantation growth on water table levels and low flows in a small catchment,” Journal of Hydrology, vol. 396, no. 3-4, pp. 321–326, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Johnson, C. Revenga, and J. Echeverria, “Managing water for people and nature,” Science, vol. 292, no. 5519, pp. 1071–1072, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Ludwig, “The era of management is over,” Ecosystems, vol. 4, no. 8, pp. 758–764, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. D. F. Scott, “On the hydrology of industrial timber plantations,” Hydrological Processes, vol. 19, no. 20, pp. 4203–4206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Kuczera, “Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest,” Journal of Hydrology, vol. 94, no. 3-4, pp. 215–236, 1987. View at Scopus
  8. R. A. Vertessy, “Impacts of plantation forestry on catchment runoff,” in Plantations, Farm Forestry and Water, E. K. S. Nambiar and A. G. Brown, Eds., no. 01/20, pp. 9–19, RIRDC, Barton, Australia, 2000.
  9. L. Zhang, W. R. Dawes, and G. R. Walker, “Response of mean annual evapotranspiration to vegetation changes at catchment scale,” Water Resources Research, vol. 37, no. 3, pp. 701–708, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. W. P. Lima, Plantation Forestry and Water: Science, Dogmas, Challenges. Writings of the Dialogue, Instituto BioAtlântica, Rio de Janeiro, Brazil, 2011.
  11. K. A. Farley, E. G. Jobbagy, and R. B. Jackson, “Effects of afforestation on water yield: a global synthesis with implications for policy,” Global Change Biology, vol. 11, no. 10, pp. 1565–1576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. B. W. Olbrich, D. le Roux, A. G. Poulter, W. J. Bond, and W. D. Stock, “Variation in water use efficiency and δ13 levels in Eucalyptus grandis clones,” Journal of Hydrology, vol. 150, no. 2–4, pp. 615–633, 1993. View at Scopus
  13. D. A. White, C. L. Beadle, M. Battaglia, R. G. Benyon, F. X. Dunin, and J. L. Medhurst, “A physiological basis for management of water use by tree crops,” in Plantations, Farm Forestry and Water, E. K. S. Nambiar and A. G. Brown, Eds., no. 01/20, pp. 20–27, RIRDC, Barton, Australia, 2001.
  14. J. K. Vanclay, “Managing water use from forest plantations,” Forest Ecology and Management, vol. 257, no. 2, pp. 385–389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Aylward, “Towards watershed science that matters,” Hydrological Processes, vol. 19, no. 13, pp. 2643–2647, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. I. R. Calder, “Forests and water: ensuring forest benefits outweigh water costs,” Forest Ecology and Management, vol. 251, no. 1-2, pp. 110–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Bosch and J. D. Hewlett, “A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration,” Journal of Hydrology, vol. 55, no. 1–4, pp. 3–22, 1982. View at Scopus
  18. E. G. Dunford and P. W. Fletcher, “Effect of removal of stream-bank vegetation upon water yield,” Transactions American Geophysical Union, vol. 28, no. 1, pp. 105–110, 1947.
  19. J. D. Hewlett and A. R. Hibbert, “Moisture and energy conditions within a sloping soil mass during drainage,” Journal of Geophysical Research, vol. 68, no. 4, pp. 1081–1087, 1963. View at Publisher · View at Google Scholar
  20. J. D. Hewlett and A. R. Hibbert, “Factors affecting the response of small watersheds to precipitation in humid areas,” in International Symposium on Forest Hydrology, W. E. Sopper and H. W. Lull, Eds., pp. 275–290, Pergamon Press, New York, NY, USA, 1967.
  21. T. Dunne and R. D. Black, “An experimental investigation of runoff production in permeable soils,” Water Resources Research, vol. 6, no. 2, pp. 478–490, 1970. View at Publisher · View at Google Scholar
  22. E. M. O'Loughlin, “Prediction of surface saturation zones in natural catchments by topographic analysis,” Water Resources Research, vol. 22, no. 5, pp. 794–804, 1986. View at Scopus
  23. K. Bishop, I. Buffam, M. Erlandsson et al., “Aqua Incognita: the unknown headwaters,” Hydrological Processes, vol. 22, no. 8, pp. 1239–1242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. R. E. Horton, “The role of infiltration in the hydrologic cycle,” Transactions of the American Geophysical Union, vol. 14, pp. 446–460, 1933.
  25. T. Dunne and R. D. Black, “Partial area contributions to storm runoff in a small New England watershed,” Water Resources Research, vol. 6, no. 5, pp. 1296–1311, 1970. View at Publisher · View at Google Scholar
  26. T. Dunne, T. R. Moore, and C. H. Taylor, “Recognition and prediction of runoff-producing zones in humid regions,” Hydrological Sciences Bulletin, vol. 20, no. 3, pp. 305–327, 1975.
  27. E. M. O'Loughlin, “Water pathways through catchments and their relation to nutrient losses,” in Proceedings of the IUFRO Workshop on Water and Nutrient Simulation Models, pp. 123–134, Birmensdorf, Zurich, Switzerland, 1981.
  28. M. T. Walter, M. F. Walter, E. S. Brooks, T. S. Steenhuis, J. Boll, and K. Weiler, “Hydrologically sensitive areas: variable source area hydrology implications for water quality risk assessment,” Journal of Soil and Water Conservation, vol. 55, no. 3, pp. 277–284, 2000. View at Scopus
  29. J. L. Fail, B. L. Haines, and R. l. Todd, “Riparian forest communities and their role in nutrient conservation in agriculture watershed,” American Journal of Alternative Agriculture, vol. 2, no. 3, pp. 114–121, 1987. View at Publisher · View at Google Scholar
  30. S. V. Gregory, F. J. Swanson, W. A. Mckee, and K. W. Cummins, “An ecosystem perspective of riparian zones,” BioScience, vol. 41, pp. 540–551, 1992.
  31. Environmental Systems Research Institute, What's New in ArcGIS 9.2. White Paper from ESRI, ESRI Press, Redlands, Calif, USA, 2006.
  32. X. Cai and D. Wang, “Spatial autocorrelation of topographic index in catchments,” Journal of Hydrology, vol. 328, no. 3-4, pp. 581–591, 2006. View at Publisher · View at Google Scholar
  33. S. K. Aryal and B. C. Bates, “Effects of catchment discretization on topographic index distributions,” Journal of Hydrology, vol. 359, no. 1-2, pp. 150–163, 2008. View at Publisher · View at Google Scholar
  34. T. Grabs, J. Seibert, K. Bishop, and H. Laudon, “Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model,” Journal of Hydrology, vol. 373, no. 1-2, pp. 15–23, 2009. View at Publisher · View at Google Scholar
  35. L. J. Agnew, S. Lyon, P. Gerard-Marchant et al., “Identifying hydrologically sensitive areas: bridging the gap between science and application,” Journal of Environmental Management, vol. 78, no. 1, pp. 63–76, 2006. View at Publisher · View at Google Scholar · View at PubMed
  36. A. Rodhe and J. Seibert, “Wetland occurrence in relation to topography: a test of topographic indices as moisture indicators,” Agricultural and Forest Meteorology, vol. 98-99, pp. 325–340, 1999. View at Publisher · View at Google Scholar
  37. K. J. Beven and M. J. Kirkby, “A physically based, variable contributing area model of basin hydrology,” Hydrological Sciences Journal, vol. 24, no. 1, pp. 43–69, 1979.
  38. D. G. Tarboton, “A new method for the determination of flow directions and upslope areas in grid digital elevation models,” Water Resources Research, vol. 33, no. 2, pp. 309–319, 1997.
  39. C. D. Rennó, A. D. Nobre, L. A. Cuartas et al., “HAND, a new terrain descriptor using SRTM-DEM: mapping terra-firme rainforest environments in Amazonia,” Remote Sensing of Environment, vol. 112, no. 9, pp. 3469–3481, 2008. View at Publisher · View at Google Scholar
  40. R. Sorensen and J. Seibert, “Effects of DEM resolution on the calculation of topographical indices: TWI and its components,” Journal of Hydrology, vol. 347, no. 1-2, pp. 79–89, 2007. View at Publisher · View at Google Scholar
  41. D. Whitehead and E. M. Kelliher, “A canopy water balance model for a Pinus radiata stand before and after thinning,” Agricultural and Forest Meteorology, vol. 55, no. 1-2, pp. 109–126, 1991. View at Scopus
  42. W. Lesch and D. E. Scott, “The response in water yield to the thinning of Pinus radiata, Pinus patula and Eucalyptus grandis plantations,” Forest Ecology and Management, vol. 99, no. 3, pp. 295–307, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. A. C. Almeida, J. V. Soares, J. J. Landsberg, and G. D. Rezende, “Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production,” Forest Ecology and Management, vol. 251, no. 1-2, pp. 10–21, 2007. View at Publisher · View at Google Scholar · View at Scopus