About this Journal Submit a Manuscript Table of Contents
International Journal of Forestry Research
Volume 2012 (2012), Article ID 934974, 13 pages
http://dx.doi.org/10.1155/2012/934974
Research Article

Large-Scale Forest Modeling: Deducing Stand Density from Inventory Data

1IIASA International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria
2Department of Mathematics and Statistics, University of Canterbury, 8140 Christchurch, New Zealand
3Department of Forest and Soil Sciences, Institute of Silviculture, University of Natural Resources and Applied Life Sciences (BOKU) Vienna, Peter Jordan Straße 82, 1190 Wien, Austria

Received 30 March 2011; Revised 6 October 2011; Accepted 6 October 2011

Academic Editor: Hubert Sterba

Copyright © 2012 Oskar Franklin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Briceño-Elizondo, J. Garcia-Gonzalo, H. Peltola, and S. Kellomäki, “Carbon stocks and timber yield in two boreal forest ecosystems under current and changing climatic conditions subjected to varying management regimes,” Environmental Science and Policy, vol. 9, no. 3, pp. 237–252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Pohjola and L. Valsta, “Carbon credits and management of Scots pine and Norway spruce stands in Finland,” Forest Policy and Economics, vol. 9, no. 7, pp. 789–798, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Böttcher, A. Freibauer, M. Obersteiner, and E. D. Schulze, “Uncertainty analysis of climate change mitigation options in the forestry sector using a generic carbon budget model,” Ecological Modelling, vol. 213, no. 1, pp. 45–62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. T. P. Sullivan, D. S. Sullivan, and P. M. F. Lindgren, “Stand structure and small mammals in young lodgepole pine forest: 10-year results after thinning,” Ecological Applications, vol. 11, no. 4, pp. 1151–1173, 2001. View at Scopus
  5. F. Wang and Y. J. Xu, “Hurricane Katrina-induced forest damage in relation to ecological factors at landscape scale,” Environmental Monitoring and Assessment, vol. 156, no. 1–4, pp. 491–507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. J. Fettig, K. D. Klepzig, R. F. Billings et al., “The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States,” Forest Ecology and Management, vol. 238, no. 1–3, pp. 24–53, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. D. A. Perry, H. Jing, A. Youngblood, and D. R. Oetter, “Forest structure and fire susceptibility in volcanic landscapes of the eastern high Cascades, Oregon,” Conservation Biology, vol. 18, no. 4, pp. 913–926, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. O. Franklin, K. Aoki, and R. Seidl, “A generic model of thinning and stand density effects on forest growth, mortality and net increment,” Annals of Forest Science, vol. 66, no. 8, p. 815, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. G. J. Nabuurs, M. J. Schelhaas, G. M. J. Mohrens, and C. B. Field, “Temporal evolution of the European forest sector carbon sink from 1950 to 1999,” Global Change Biology, vol. 9, no. 2, pp. 152–160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Lindner, “Will European forests become future green powerhouses?” EFI News, vol. 14, no. 1, pp. 6–8, 2006. View at Scopus
  11. W. A. Kurz and M. J. Apps, “A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector,” Ecological Applications, vol. 9, no. 2, pp. 526–547, 1999. View at Scopus
  12. M. Siitonen, K. Härkönen, H. Kilpeläinen, and O. Salminen, MELA Handbook—1999 Edition, The Finnish Forest Research Institute, Vantaa, Finland, 1999.
  13. J. Hynynen, A. Ahtikoski, J. Siitonen, R. Sievänen, and J. Liski, “Applying the MOTTI simulator to analyse the effects of alternative management schedules on timber and non-timber production,” Forest Ecology and Management, vol. 207, no. 1-2, pp. 5–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Sterba and R. A. Monserud, “Applicability of the forest stand growth simulator Prognaus for the Austrian part of the Bohemian Massif,” Ecological Modelling, vol. 98, no. 1, pp. 23–34, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. M. J. Schelhaas, S. Varis, A. Schuck, and G. J. Nabuurs, (European Forest Institute, Joensuu, Finland, 1999).
  16. G. J. Nabuurs, M. J. Schelhaas, and A. Pussinen, “Validation of the European forest information scenario model (EFISCEN) and a projection of Finnish forests,” Silva Fennica, vol. 34, no. 2, pp. 167–179, 2000. View at Scopus
  17. G. J. Nabuurs, A. Pussinen, T. Karjalainen, M. Erhard, and K. Kramer, “Stemwood volume increment changes in European forests due to climate change-a simulation study with the EFISCEN model,” Global Change Biology, vol. 8, no. 4, pp. 304–316, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Schelhaas, J. Eggers, M. Lindner et al., “Model documentation for the European forest information scenario model (EFISCEN 3.1.3),” EFI Technical Report 26, 2007.
  19. C. W. Woodall, C. H. Perry, and P. D. Miles, “The relative density of forests in the United States,” Forest Ecology and Management, vol. 226, no. 1–3, pp. 368–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Kayitakire, C. Hamel, and P. Defourny, “Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery,” Remote Sensing of Environment, vol. 102, no. 3-4, pp. 390–401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. T. Hudak, J. S. Evans, M. J. Falkowski et al., “Predicting plot basal area and tree density in mixed-conifer forest from lidar and advanced land imager (ALI) data,” in Proceedings of the 26th Canadian Symposium on Remote Sensing, pp. 201–208, Nova Scotia, Canada, June 2005. View at Scopus
  22. M. Magnusson, J. E. S. Fransson, and J. Holmgren, “Effects on estimation accuracy of forest variables using different pulse density of laser data,” Forest Science, vol. 53, no. 6, pp. 619–626, 2007. View at Scopus
  23. S. Federici, R. Quaratino, D. Papale, and R. Valentini, (DiSAFRi–University of Tuscia, 2001).
  24. F. J. Richards, “A flexible growth function for empirical use,” Journal of Experimental Botany, vol. 10, no. 2, pp. 290–301, 1959. View at Publisher · View at Google Scholar · View at Scopus
  25. O. Franklin, R. E. McMurtrie, C. M. Iversen et al., “Forest fine-root production and nitrogen use under elevated CO2: contrasting responses in evergreen and deciduous trees explained by a common principle,” Global Change Biology, vol. 15, no. 1, pp. 132–144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. D. E. Weller, “A re-evaluation of the -3/2 power rule of plant self-thinning,” Ecological Monographs, vol. 57, no. 1, pp. 23–43, 1987. View at Scopus
  27. B. Zeide, “Optimal stand density: a solution,” Canadian Journal of Forest Research, vol. 34, no. 4, pp. 846–854, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. P. H. Wyckoff and J. S. Clark, “The relationship between growth and mortality for seven co-occurring tree species in the southern appalachian mountains,” Journal of Ecology, vol. 90, no. 4, pp. 604–615, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Garcia, “New approaches to spacing and thinning in plantation forestry,” in Proceedings of the a IUFRO symposium held at the Forest Research Institute, R. N. James and G. L. Tarlton, Eds., vol. 151 of FRI Bulletin, New Zealand Ministry of Forestry, Forest Research Institute, Rotorua, New Zealand, April 1989.
  30. R. A. Monserud and H. Sterba, “Modeling individual tree mortality for Austrian forest species,” Forest Ecology and Management, vol. 113, no. 2-3, pp. 109–123, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Seidl, M. J. Lexer, D. Jäger, and K. Hönninger, “Evaluating the accuracy and generality of a hybrid patch model,” Tree Physiology, vol. 25, no. 7, pp. 939–951, 2005. View at Scopus
  32. R. Seidl, W. Rammer, and M. J. Lexer, “Estimating soil properties and parameters for forest ecosystem simulation based on large scale forest inventories,” Allgemeine Forst- und Jagdzeitung, vol. 180, no. 1-2, pp. 35–44, 2009. View at Scopus
  33. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, Chapman & Hall/CRC, New York, NY, USA, 2004.
  34. D. J. Spiegelhalter, A. Thomas, N. G. Best, and W. R. Gilks, Bayesian Inference Using Gibbs Sampling, Version 0.50, MRC Biostatistics Unit, 1995.
  35. P. Weinfurter, Waldbauhandbuch. Eine Orientierungshilfe für die Praxis, Österreichische Bundesforste AG, 2004.
  36. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Data Mining, Inference, and Prediction, Springer, New York, NY, USA, 2001.
  37. J. N. Long, T. J. Dean, and S. D. Roberts, “Linkages between silviculture and ecology: examination of several important conceptual models,” Forest Ecology and Management, vol. 200, no. 1–3, pp. 249–261, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Hagner, Forest Management in Temperate and Boreal Forests: Current Practices and the Scope for Implementing Sustainable Forest Management, Forestry Policy and Planning Division, FAO, Rome, Italy, 1999.
  39. N. L. Crookston and G. E. Dixon, “The forest vegetation simulator: a review of its structure, content, and applications,” Computers and Electronics in Agriculture, vol. 49, no. 1, pp. 60–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Hyytiäinen, P. Hari, T. Kokkila, A. Mäkelä, O. Tahvonen, and J. Taipale, “Connecting a process-based forest growth model to stand-level economic optimization,” Canadian Journal of Forest Research, vol. 34, no. 10, pp. 2060–2073, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Hilker, N. C. Coops, M. A. Wulder, T. A. Black, and R. D. Guy, “The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements,” Science of the Total Environment, vol. 404, no. 2-3, pp. 411–423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Lu, “The potential and challenge of remote sensing-based biomass estimation,” International Journal of Remote Sensing, vol. 27, no. 7, pp. 1297–1328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. U. A. Schneider, J. Balkovic, S. de Cara et al., “The European forest and agricultural sector optimization model—EUFASOM working paper FNU-156,” Tech. Rep., University and Centre for Marine and Atmospheric Science, Hamburg, Germany, 2008.