About this Journal Submit a Manuscript Table of Contents
International Journal of Forestry Research
Volume 2013 (2013), Article ID 946374, 10 pages
http://dx.doi.org/10.1155/2013/946374
Research Article

Survey to Evaluate Escape of Eucalyptus spp. Seedlings from Plantations in Southeastern USA

1Center for Forest Disturbance Science, USDA Forest Service, Southern Research Station, Athens, GA 30602, USA
2Product Development, ArborGen Inc., Summerville, SC 29483, USA
3Florida FGT LLC, Gainesville, FL 32635, USA
4School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA

Received 10 July 2012; Revised 8 December 2012; Accepted 17 December 2012

Academic Editor: Matias Kirst

Copyright © 2013 Mac A. Callaham Jr. et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. S. Zalesny Jr., M. W. Cunningham, R. B. Hall et al., “Woody biomass from short rotation energy crops,” in Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass, J. Y. Zhu, X. Zhang, and J. Pan, Eds., vol. 1067 of ACS Symposium Series, pp. 27–63, American Chemical Society, Washington, DC, USA, 2011.
  2. J. Gan and C. T. Smith, “Availability of logging residues and potential for electricity production and carbon displacement in the USA,” Biomass and Bioenergy, vol. 30, no. 12, pp. 1011–1020, 2006. View at Publisher · View at Google Scholar
  3. R. Gonzalez, T. Treasure, J. Wright et al., “Exploring the potential of Eucalyptus for energy production in the Southern United States: financial analysis of delivered biomass. Part I,” Biomass and Bioenergy, vol. 35, no. 2, pp. 755–766, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. M. H. Langholtz, D. R. Carter, and D. L. Rockwood, Assessing the Economic Feasibility of Short-Rotation Woody Crops in Florida, Circular 1516, IFAS Extension, University of Florida, Gainesville, Fla, USA, 2010.
  5. R. Rousseau, Short Rotation Woody Crops, vol. 2611, Extension Service of Mississippi State University, Starkville, Miss, USA, 2010.
  6. D. L. Rockwood, D. R. Carter, M. H. Langholtz, and J. A. Stricker, “Eucalyptus and Populus short rotation woody crops for phosphate mined lands in Florida USA,” Biomass and Bioenergy, vol. 30, no. 8-9, pp. 728–734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. D. Coleman and J. A. Stanturf, “Biomass feedstock production systems: economic and environmental benefits,” Biomass and Bioenergy, vol. 30, no. 8-9, pp. 693–695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. N. Barney and J. M. DiTomaso, “Nonnative species and bioenergy: are we cultivating the next invader?” BioScience, vol. 58, no. 1, pp. 64–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Ferdinands, J. Virtue, S. B. Johnson, and S. A. Setterfield, “‘Bio-insecurities’: managing demand for potentially invasive species in the bioeconomy,” Current Opinion in Environmental Sustainability, vol. 3, no. 1-2, pp. 43–49, 2011. View at Publisher · View at Google Scholar
  10. B. W. van Wilgen, G. G. Forsyth, D. C. Le Maitre et al., “An assessment of the effectiveness of a large, national-scale invasive alien plant control strategy in South Africa,” Biological Conservation, vol. 148, pp. 28–38, 2012. View at Publisher · View at Google Scholar
  11. G. G. Forsyth, D. M. Richardson, P. J. Brown, and B. W. Van Wilgen, “A rapid assessment of the invasive status of Eucalyptus species in two South African provinces,” South African Journal of Science, vol. 100, no. 1-2, pp. 75–77, 2004. View at Scopus
  12. P. I. Becerra and R. O. Bustamante, “The effect of herbivory on seedling survival of the invasive exotic species Pinus radiata and Eucalyptus globulus in a Mediterranean ecosystem of Central Chile,” Forest Ecology and Management, vol. 256, no. 9, pp. 1573–1578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. P. H. M. da Silva, F. Poggiani, A. M. Sebbenn, and E. S. Mori, “Can Eucalyptus invade native forest fragments close to commercial stands?” Forest Ecology and Management, vol. 261, no. 11, pp. 2075–2080, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Ritter and J. Yost, “Diversity, reproduction, and potential for invasiveness of Eucalyptus in California,” Madroño, vol. 56, pp. 155–167, 2009. View at Publisher · View at Google Scholar
  15. D. L. Rockwood, “History and status of Eucalyptus improvement in Florida,” International Journal of Forestry Research, vol. 2012, Article ID 607879, 10 pages, 2012. View at Publisher · View at Google Scholar
  16. M. Rejmánek and D. M. Richardson, “Eucalypts,” in Encyclopedia of Biological Invasions, D. Simberloff and M. Rejmánek, Eds., pp. 203–209, University of California Press, Berkeley, Calif, USA, 2011.
  17. D. Boyd, “Eucalyptus globulus,” in Invasive Plants of California's Wildlands, C. C. Bossard, J. M. Randall, and M. C. Hoshovsky, Eds., pp. 183–187, 2000.
  18. P. C. Pheloung, P. A. Williams, and S. R. Halloy, “A weed risk assessment model for use as a biosecurity tool evaluating plant introductions,” Journal of Environmental Management, vol. 57, no. 4, pp. 239–251, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. D. R. Gordon, D. A. Onderdonk, A. M. Fox, and R. K. Stocker, “Consistent accuracy of the Australian weed risk assessment system across varied geographies,” Diversity and Distributions, vol. 14, no. 2, pp. 234–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. R. Gordon, K. J. Tancig, D. A. Onderdonk, and C. A. Gantz, “Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian Weed Risk Assessment,” Biomass and Bioenergy, vol. 35, no. 1, pp. 74–79, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. M. Richardson, P. Pyšek, M. Rejmánek, M. G. Barbour, F. D. Panetta, and C. J. West, “Naturalization and invasion of alien plants: concepts and definitions,” Diversity and Distributions, vol. 6, no. 2, pp. 93–107, 2000. View at Publisher · View at Google Scholar
  22. T. M. Blackburn, P. Pyšek, S. Bacher et al., “A proposed unified framework for biological invasions,” Trends in Ecology and Evolution, vol. 26, pp. 333–339, 2011.
  23. R. H. Green and R. C. Young, “Sampling to detect rare species,” Ecological Applications, vol. 3, no. 2, pp. 351–356, 1993. View at Publisher · View at Google Scholar
  24. J. L. Lockwood, P. Cassey, and T. Blackburn, “The role of propagule pressure in explaining species invasions,” Trends in Ecology and Evolution, vol. 20, no. 5, pp. 223–228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. C. Vieira, N. G. Oliveira, and S. F. Gayubo, “On the use of Apiformes and Spheciformes (Insecta: Hymenoptera) populations as a management tool,” Biodiversity and Conservation, vol. 20, no. 3, pp. 519–530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. T. D. Paine, J. G. Millar, and K. M. Daane, “Accumulation of pest insects on eucalyptus in California: random process or smoking gun,” Journal of Economic Entomology, vol. 103, no. 6, pp. 1943–1949, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Díez, “Invasion biology of Australian ectomycorrhizal fungi introduced with eucalypt plantations into the Iberian Peninsula,” Biological Invasions, vol. 7, no. 1, pp. 3–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. N. C. Ellstrand and K. A. Schierenbeck, “Hybridization as a stimulus for the evolution of invasiveness in plants?” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 7043–7050, 2000. View at Publisher · View at Google Scholar · View at Scopus