About this Journal Submit a Manuscript Table of Contents
Comparative and Functional Genomics
Volume 6 (2005), Issue 5-6, Pages 277-300
http://dx.doi.org/10.1002/cfg.482
Research article

Identification and Comparative Analysis of the Peptidyl-Prolyl cis/trans Isomerase Repertoires of H. sapiens, D. melanogaster, C. elegans, S. cerevisiae and Sz. pombe

1The Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, East Sussex BN1 9PX, United Kingdom
2Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-240, Los Angeles, CA 90033, USA

Received 31 January 2005; Revised 1 May 2005; Accepted 26 May 2005

Copyright © 2005 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The peptidyl-prolyl cis/trans isomerase (PPIase) class of proteins comprises three member families that are found throughout nature and are present in all the major compartments of the cell. Their numbers appear to be linked to the number of genes in their respective genomes, although we have found the human repertoire to be smaller than expected due to a reduced cyclophilin repertoire. We show here that whilst the members of the cyclophilin family (which are predominantly found in the nucleus and cytoplasm) and the parvulin family (which are predominantly nuclear) are largely conserved between different repertoires, the FKBPs (which are predominantly found in the cytoplasm and endoplasmic reticulum) are not. It therefore appears that the cyclophilins and parvulins have evolved to perform conserved functions, while the FKBPs have evolved to fill ever-changing niches within the constantly evolving organisms. Many orthologous subgroups within the different PPIase families appear to have evolved from a distinct common ancestor, whereas others, such as the mitochondrial cyclophilins, appear to have evolved independently of one another. We have also identified a novel parvulin within Drosophila melanogaster that is unique to the fruit fly, indicating a recent evolutionary emergence. Interestingly, the fission yeast repertoire, which contains no unique cyclophilins and parvulins, shares no PPIases solely with the budding yeast but it does share a majority with the higher eukaryotes in this study, unlike the budding yeast. It therefore appears that, in comparison with Schizosaccharomyces pombe, Saccharomyces cerevisiae is a poor representation of the higher eukaryotes for the study of PPIases.