About this Journal Submit a Manuscript Table of Contents
Comparative and Functional Genomics
Volume 2009 (2009), Article ID 837514, 11 pages
http://dx.doi.org/10.1155/2009/837514
Review Article

MicroRNA Profiling and Head and Neck Cancer

1Center for Molecular Biology of Oral Diseases, UIC Cancer Center, College of Dentistry, Graduate College, University of Illinois at Chicago, Chicago, IL 60612, USA
2Guanghua School & Research Institute of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
3Department of Human Genetics & UCLA Microarray Core Facility, University of California at Los Angeles, Los Angeles, CA 90095, USA
4GenoSensor Corporation, Tempe, AZ 85282, USA

Received 14 January 2009; Accepted 13 March 2009

Academic Editor: W. Zhang

Copyright © 2009 Xiqiang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. C. Boring, T. S. Squires, and T. Tong, “Cancer statistics, 1991,” Boletin de la Asociacion Medica de Puerto Rico, vol. 83, no. 6, pp. 225–242, 1991.
  2. A. Jemal, T. Murray, E. Ward, et al., “Cancer statistics, 2005,” CA: A Cancer Journal for Clinicians, vol. 55, no. 1, pp. 10–30, 2005. View at Publisher · View at Google Scholar
  3. A. Jemal, R. Siegel, E. Ward, et al., “Cancer statistics, 2008,” CA: A Cancer Journal for Clinicians, vol. 58, no. 2, pp. 71–96, 2008. View at Publisher · View at Google Scholar
  4. A. Jemal, R. Siegel, E. Ward, et al., “Cancer statistics, 2006,” CA: A Cancer Journal for Clinicians, vol. 56, no. 2, pp. 106–130, 2006. View at Publisher · View at Google Scholar
  5. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” CA: A Cancer Journal for Clinicians, vol. 57, no. 1, pp. 43–66, 2007. View at Publisher · View at Google Scholar
  6. A. Jemal, R. C. Tiwari, T. Murray, et al., “Cancer statistics, 2004,” CA: A Cancer Journal for Clinicians, vol. 54, no. 1, pp. 8–29, 2004. View at Publisher · View at Google Scholar
  7. W. J. Blot, J. K. McLaughlin, D. M. Winn, et al., “Smoking and drinking in relation to oral and pharyngeal cancer,” Cancer Research, vol. 48, no. 11, pp. 3282–3287, 1988.
  8. S. K. C. Ng, G. C. Kabat, and E. L. Wynder, “Oral cavity cancer in non-users of tobacco,” Journal of the National Cancer Institute, vol. 85, no. 9, pp. 743–745, 1993. View at Publisher · View at Google Scholar
  9. A. Psyrri and D. DiMaio, “Human papillomavirus in cervical and head-and-neck cancer,” Nature Clinical Practice Oncology, vol. 5, no. 1, pp. 24–31, 2008. View at Publisher · View at Google Scholar
  10. R. Herrero, X. Castellsagué, M. Pawlita, et al., “Human papillomavirus and oral cancer: the international agency for research on cancer multicenter study,” Journal of the National Cancer Institute, vol. 95, no. 23, pp. 1772–1783, 2003.
  11. I. Bentwich, A. Avniel, Y. Karov, et al., “Identification of hundreds of conserved and nonconserved human microRNAs,” Nature Genetics, vol. 37, no. 7, pp. 766–770, 2005. View at Publisher · View at Google Scholar
  12. B. P. Lewis, I.-H. Shih, M. W. Jones-Rhoades, D. P. Bartel, and C. B. Burge, “Prediction of mammalian microRNA targets,” Cell, vol. 115, no. 7, pp. 787–798, 2003. View at Publisher · View at Google Scholar
  13. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar
  14. X. Xie, J. Lu, E. J. Kulbokas, et al., “Systematic discovery of regulatory motifs in human promoters and 3 UTRs by comparison of several mammals,” Nature, vol. 434, no. 7031, pp. 338–345, 2005. View at Publisher · View at Google Scholar
  15. G. Stefani and F. J. Slack, “Small non-coding RNAs in animal development,” Nature Reviews Molecular Cell Biology, vol. 9, no. 3, pp. 219–230, 2008. View at Publisher · View at Google Scholar
  16. W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008. View at Publisher · View at Google Scholar
  17. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar
  18. N. Bushati and S. M. Cohen, “microRNA functions,” Annual Review of Cell and Developmental Biology, vol. 23, pp. 175–205, 2007. View at Publisher · View at Google Scholar
  19. T.-C. Chang and J. T. Mendell, “microRNAs in vertebrate physiology and human disease,” Annual Review of Genomics and Human Genetics, vol. 8, pp. 215–239, 2007. View at Publisher · View at Google Scholar
  20. W. P. Kloosterman and R. H. A. Plasterk, “The diverse functions of microRNAs in animal development and disease,” Developmental Cell, vol. 11, no. 4, pp. 441–450, 2006. View at Publisher · View at Google Scholar
  21. V. Ambros, “The functions of animal microRNAs,” Nature, vol. 431, no. 7006, pp. 350–355, 2004. View at Publisher · View at Google Scholar
  22. N. Tran, T. McLean, X. Zhang, et al., “MicroRNA expression profiles in head and neck cancer cell lines,” Biochemical and Biophysical Research Communications, vol. 358, no. 1, pp. 12–17, 2007. View at Publisher · View at Google Scholar
  23. C. Hebert, K. Norris, M. A. Scheper, N. Nikitakis, and J. J. Sauk, “High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma,” Molecular Cancer, vol. 6, article 5, pp. 1–11, 2007. View at Publisher · View at Google Scholar
  24. S. S. Chang, W. W. Wei, I. Smith, et al., “MicroRNA alterations in head and neck squamous cell carcinoma,” International Journal of Cancer, vol. 123, no. 12, pp. 2791–2797, 2008. View at Publisher · View at Google Scholar
  25. T.-S. Wong, X.-B. Liu, B. Y.-H. Wong, R. W.-M. Ng, A. P.-W. Yuen, and W. I. Wei, “Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue,” Clinical Cancer Research, vol. 14, no. 9, pp. 2588–2592, 2008. View at Publisher · View at Google Scholar
  26. T.-S. Wong, X.-B. Liu, A. C.-W. Ho, A. P.-W. Yuen, R. W.-M. Ng, and W. I. Wei, “Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling,” International Journal of Cancer, vol. 123, no. 2, pp. 251–257, 2008. View at Publisher · View at Google Scholar
  27. K.-I. Kozaki, I. Imoto, S. Mogi, K. Omura, and J. Inazawa, “Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer,” Cancer Research, vol. 68, no. 7, pp. 2094–2105, 2008. View at Publisher · View at Google Scholar
  28. J. Q. Yin, R. C. Zhao, and K. V. Morris, “Profiling microRNA expression with microarrays,” Trends in Biotechnology, vol. 26, no. 2, pp. 70–76, 2008. View at Publisher · View at Google Scholar
  29. J. M. Thomson, J. Parker, C. M. Perou, and S. M. Hammond, “A custom microarray platform for analysis of microRNA gene expression,” Nature Methods, vol. 1, no. 1, pp. 47–53, 2004. View at Publisher · View at Google Scholar
  30. M. Castoldi, S. Schmidt, V. Benes, M. W. Hentze, and M. U. Muckenthaler, “miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes,” Nature Protocols, vol. 3, no. 2, pp. 321–329, 2008. View at Publisher · View at Google Scholar
  31. M. Castoldi, S. Schmidt, V. Benes, et al., “A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA),” RNA, vol. 12, no. 5, pp. 913–920, 2006. View at Publisher · View at Google Scholar
  32. M. Castoldi, V. Benes, M. W. Hentze, and M. U. Muckenthaler, “miChip: a microarray platform for expression profiling of microRNAs based on locked nucleic acid (LNA) oligonucleotide capture probes,” Methods, vol. 43, no. 2, pp. 146–152, 2007. View at Publisher · View at Google Scholar
  33. L. Venturini, K. Battmer, M. Castoldi, et al., “Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells,” Blood, vol. 109, no. 10, pp. 4399–4405, 2007. View at Publisher · View at Google Scholar
  34. L. F. Sempere, M. Christensen, A. Silahtaroglu, et al., “Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer,” Cancer Research, vol. 67, no. 24, pp. 11612–11620, 2007. View at Publisher · View at Google Scholar
  35. J. Stenvang, A. N. Silahtaroglu, M. Lindow, J. Elmen, and S. Kauppinen, “The utility of LNA in microRNA-based cancer diagnostics and therapeutics,” Seminars in Cancer Biology, vol. 18, no. 2, pp. 89–102, 2008. View at Publisher · View at Google Scholar
  36. P. T. Nelson, D. A. Baldwin, L. M. Scearce, J. C. Oberholtzer, J. W. Tobias, and Z. Mourelatos, “Microarray-based, high-throughput gene expression profiling of microRNAs,” Nature Methods, vol. 1, no. 2, pp. 155–161, 2004. View at Publisher · View at Google Scholar
  37. E. Berezikov, G. van Tetering, M. Verheul, et al., “Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis,” Genome Research, vol. 16, no. 10, pp. 1289–1298, 2006. View at Publisher · View at Google Scholar
  38. P. T. Nelson, D. A. Baldwin, W. P. Kloosterman, S. Kauppinen, R. H. A. Plasterk, and Z. Mourelatos, “RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain,” RNA, vol. 12, no. 2, pp. 187–191, 2006. View at Publisher · View at Google Scholar
  39. J. Jiang, E. J. Lee, Y. Gusev, and T. D. Schmittgen, “Real-time expression profiling of microRNA precursors in human cancer cell lines,” Nucleic Acids Research, vol. 33, no. 17, pp. 5394–5403, 2005. View at Publisher · View at Google Scholar
  40. J. M. Cummins, Y. He, R. J. Leary, et al., “The colorectal microRNAome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 10, pp. 3687–3692, 2006. View at Publisher · View at Google Scholar
  41. N. A. Datson, “Scaling down SAGE: from miniSAGE to microSAGE,” Current Pharmaceutical Biotechnology, vol. 9, no. 5, pp. 351–361, 2008. View at Publisher · View at Google Scholar
  42. H. Matsumura, D. H. Krüger, G. Kahl, and R. Terauchi, “SuperSAGE: a modern platform for genome-wide quantitative transcript profiling,” Current Pharmaceutical Biotechnology, vol. 9, no. 5, pp. 368–374, 2008. View at Publisher · View at Google Scholar
  43. A. P. So, R. F. Turner, and C. A. Haynes, “Increasing the efficiency of SAGE adaptor ligation by directed ligation chemistry,” Nucleic Acids Research, vol. 32, no. 12, article e96, pp. 1–10, 2004. View at Publisher · View at Google Scholar
  44. M. de Hoon and Y. Hayashizaki, “Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference,” BioTechniques, vol. 44, no. 5, pp. 627–632, 2008. View at Publisher · View at Google Scholar
  45. T. T. Torres, M. Metta, B. Ottenwälder, and C. Schlötterer, “Gene expression profiling by massively parallel sequencing,” Genome Research, vol. 18, no. 1, pp. 172–177, 2008. View at Publisher · View at Google Scholar
  46. L. Hene, V. B. Sreenu, M. T. Vuong, et al., “Deep analysis of cellular transcriptomes—longSAGE versus classic MPSS,” BMC Genomics, vol. 8, article 333, pp. 1–14, 2007. View at Publisher · View at Google Scholar
  47. J. Lu, G. Getz, E. A. Miska, et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar
  48. N. Rosenfeld, R. Aharonov, E. Meiri, et al., “MicroRNAs accurately identify cancer tissue origin,” Nature Biotechnology, vol. 26, no. 4, pp. 462–469, 2008. View at Publisher · View at Google Scholar
  49. F. Gottardo, C. G. Liu, M. Ferracin, et al., “Micro-RNA profiling in kidney and bladder cancers,” Urologic Oncology, vol. 25, no. 5, pp. 387–392, 2007. View at Publisher · View at Google Scholar
  50. N. Kondo, T. Toyama, H. Sugiura, Y. Fujii, and H. Yamashita, “miR-206 expression is down-regulated in estrogen receptor α-positive human breast cancer,” Cancer Research, vol. 68, no. 13, pp. 5004–5008, 2008. View at Publisher · View at Google Scholar
  51. D. Bhaumik, G. K. Scott, S. Schokrpur, C. K. Patil, J. Campisi, and C. C. Benz, “Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells,” Oncogene, vol. 27, no. 42, pp. 5643–5647, 2008. View at Publisher · View at Google Scholar
  52. L.-X. Yan, X.-F. Huang, Q. Shao, et al., “MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis,” RNA, vol. 14, no. 11, pp. 2348–2360, 2008. View at Publisher · View at Google Scholar
  53. B. Muralidhar, L. D. Goldstein, G. Ng, et al., “Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels,” Journal of Pathology, vol. 212, no. 4, pp. 368–377, 2007. View at Publisher · View at Google Scholar
  54. W.-O. Lui, N. Pourmand, B. K. Patterson, and A. Fire, “Patterns of known and novel small RNAs in human cervical cancer,” Cancer Research, vol. 67, no. 13, pp. 6031–6043, 2007. View at Publisher · View at Google Scholar
  55. I. Martinez, A. S. Gardiner, K. F. Board, F. A. Monzon, R. P. Edwards, and S. A. Khan, “Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells,” Oncogene, vol. 27, no. 18, pp. 2575–2582, 2008. View at Publisher · View at Google Scholar
  56. J.-W. Lee, C. H. Choi, J.-J. Choi, et al., “Altered microRNA expression in cervical carcinomas,” Clinical Cancer Research, vol. 14, no. 9, pp. 2535–2542, 2008. View at Publisher · View at Google Scholar
  57. X. Wang, S. Tang, S.-Y. Le, et al., “Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth,” PLoS One, vol. 3, no. 7, article e2557, pp. 1–11, 2008. View at Publisher · View at Google Scholar
  58. M. Z. Michael, S. M. O'Connor, N. G. van Holst Pellekaan, G. P. Young, and R. J. James, “Reduced accumulation of specific microRNAs in colorectal neoplasia,” Molecular Cancer Research, vol. 1, no. 12, pp. 882–891, 2003.
  59. E. Bandrés, E. Cubedo, X. Agirre, et al., “Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues,” Molecular Cancer, vol. 5, article 29, pp. 1–10, 2006. View at Publisher · View at Google Scholar
  60. O. Slaby, M. Svoboda, P. Fabian, et al., “Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer,” Oncology, vol. 72, no. 5-6, pp. 397–402, 2007. View at Publisher · View at Google Scholar
  61. G. A. Calin, C.-G. Liu, C. Sevignani, et al., “MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 32, pp. 11755–11760, 2004. View at Publisher · View at Google Scholar
  62. G. A. Calin, C. D. Dumitru, M. Shimizu, et al., “Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15524–15529, 2002. View at Publisher · View at Google Scholar
  63. Y. Murakami, T. Yasuda, K. Saigo, et al., “Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues,” Oncogene, vol. 25, no. 17, pp. 2537–2545, 2006. View at Publisher · View at Google Scholar
  64. Y. Wang, A. T. C. Lee, J. Z. I. Ma, et al., “Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target,” The Journal of Biological Chemistry, vol. 283, no. 19, pp. 13205–13215, 2008. View at Publisher · View at Google Scholar
  65. Q. W.-L. Wong, R. W.-M. Lung, P. T.-Y. Law, et al., “MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1,” Gastroenterology, vol. 135, no. 1, pp. 257–269, 2008. View at Publisher · View at Google Scholar
  66. J. Takamizawa, H. Konishi, K. Yanagisawa, et al., “Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival,” Cancer Research, vol. 64, no. 11, pp. 3753–3756, 2004. View at Publisher · View at Google Scholar
  67. N. Yanaihara, N. Caplen, E. Bowman, et al., “Unique microRNA molecular profiles in lung cancer diagnosis and prognosis,” Cancer Cell, vol. 9, no. 3, pp. 189–198, 2006. View at Publisher · View at Google Scholar
  68. A. M. Cheng, M. W. Byrom, J. Shelton, and L. P. Ford, “Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis,” Nucleic Acids Research, vol. 33, no. 4, pp. 1290–1297, 2005. View at Publisher · View at Google Scholar
  69. M. Metzler, M. Wilda, K. Busch, S. Viehmann, and A. Borkhardt, “High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma,” Genes Chromosomes and Cancer, vol. 39, no. 2, pp. 167–169, 2004. View at Publisher · View at Google Scholar
  70. C. Roldo, E. Missiaglia, J. P. Hagan, et al., “MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior,” Journal of Clinical Oncology, vol. 24, no. 29, pp. 4677–4684, 2006. View at Publisher · View at Google Scholar
  71. S. Mitomo, C. Maesawa, S. Ogasawara, et al., “Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines,” Cancer Science, vol. 99, no. 2, pp. 280–286, 2008. View at Publisher · View at Google Scholar
  72. A. Esquela-Kerscher and F. J. Slack, “Oncomirs—microRNAs with a role in cancer,” Nature Reviews Cancer, vol. 6, no. 4, pp. 259–269, 2006. View at Publisher · View at Google Scholar
  73. G. A. Calin and C. M. Croce, “MicroRNA signatures in human cancers,” Nature Reviews Cancer, vol. 6, no. 11, pp. 857–866, 2006. View at Publisher · View at Google Scholar
  74. M.-L. Si, S. Zhu, H. Wu, Z. Lu, F. Wu, and Y.-Y. Mo, “miR-21-mediated tumor growth,” Oncogene, vol. 26, no. 19, pp. 2799–2803, 2007. View at Publisher · View at Google Scholar
  75. J. A. Chan, A. M. Krichevsky, and K. S. Kosik, “MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells,” Cancer Research, vol. 65, no. 14, pp. 6029–6033, 2005. View at Publisher · View at Google Scholar
  76. Y. Chen, W. Liu, T. Chao, et al., “MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G,” Cancer Letters, vol. 272, no. 2, pp. 197–205, 2008. View at Publisher · View at Google Scholar
  77. A. W. Tong and J. Nemunaitis, “Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy?” Cancer Gene Therapy, vol. 15, no. 6, pp. 341–355, 2008. View at Publisher · View at Google Scholar
  78. J. Yu, D. G. Ryan, S. Getsios, M. Oliveira-Fernandes, A. Fatima, and R. M. Lavker, “MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19300–19305, 2008. View at Publisher · View at Google Scholar
  79. L. Xiao, J. Xiao, X. Luo, H. Lin, Z. Wang, and S. Nattel, “Feedback remodeling of cardiac potassium current expression: a novel potential mechanism for control of repolarization reserve,” Circulation, vol. 118, no. 10, pp. 983–992, 2008. View at Publisher · View at Google Scholar
  80. C. Sucharov, M. R. Bristow, and J. D. Port, “miRNA expression in the failing human heart: functional correlates,” Journal of Molecular and Cellular Cardiology, vol. 45, no. 2, pp. 185–192, 2008. View at Publisher · View at Google Scholar
  81. M. E. I. Schipper, J. van Kuik, N. de Jonge, H. F. J. Dullens, and R. A. de Weger, “Changes in regulatory microRNA expression in myocardium of heart failure patients on left ventricular assist device support,” Journal of Heart and Lung Transplantation, vol. 27, no. 12, pp. 1282–1285, 2008. View at Publisher · View at Google Scholar
  82. A. Palmieri, F. Pezzetti, G. Brunelli, et al., “Differences in osteoblast miRNA induced by cell binding domain of collagen and silicate-based synthetic bone,” Journal of Biomedical Science, vol. 14, no. 6, pp. 777–782, 2007. View at Publisher · View at Google Scholar
  83. J. Kim, K. Inoue, J. Ishii, et al., “A microRNA feedback circuit in midbrain dopamine neurons,” Science, vol. 317, no. 5842, pp. 1220–1224, 2007. View at Publisher · View at Google Scholar
  84. J. Silber, D. A. Lim, C. Petritsch, et al., “miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells,” BMC Medicine, vol. 6, article 14, pp. 1–17, 2008. View at Publisher · View at Google Scholar
  85. L. T. Bemis, R. Chen, C. M. Amato, et al., “MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines,” Cancer Research, vol. 68, no. 5, pp. 1362–1368, 2008. View at Publisher · View at Google Scholar
  86. D. Ovcharenko, K. Kelnar, C. Johnson, N. Leng, and D. Brown, “Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway,” Cancer Research, vol. 67, no. 22, pp. 10782–10788, 2007. View at Publisher · View at Google Scholar
  87. G. Teng and F. N. Papavasiliou, “Shhh! silencing by microRNA-155,” Philosophical Transactions of the Royal Society B, vol. 364, no. 1517, pp. 631–637, 2009. View at Publisher · View at Google Scholar
  88. W. Kong, H. Yang, L. He, et al., “MicroRNA-155 is regulated by the transforming growth factor β/smad pathway and contributes to epithelial cell plasticity by targeting RhoA,” Molecular and Cellular Biology, vol. 28, no. 22, pp. 6773–6784, 2008. View at Publisher · View at Google Scholar
  89. D. T. W. Wong, “TGF-α and oral carcinogenesis,” European Journal of Cancer. Part B, vol. 29, no. 1, pp. 3–7, 1993. View at Publisher · View at Google Scholar
  90. S. Veerla, D. Lindgren, A. Kvist, et al., “MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31,” International Journal of Cancer, vol. 124, no. 9, pp. 2236–2242, 2009. View at Publisher · View at Google Scholar
  91. H. Bruchova, M. Merkerova, and J. T. Prchal, “Aberrant expression of microRNA in polycythemia vera,” Haematologica, vol. 93, no. 7, pp. 1009–1016, 2008. View at Publisher · View at Google Scholar
  92. R. Kulshreshtha, M. Ferracin, S. E. Wojcik, et al., “A microRNA signature of hypoxia,” Molecular and Cellular Biology, vol. 27, no. 5, pp. 1859–1867, 2007. View at Publisher · View at Google Scholar
  93. A. Izzotti, G. A. Calin, P. Arrigo, V. E. Steele, C. M. Croce, and S. De Flora, “Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke,” The FASEB Journal, vol. 23, no. 3, pp. 806–812, 2009. View at Publisher · View at Google Scholar
  94. S. Sander, L. Bullinger, K. Klapproth, et al., “MYC stimulates EZH2 expression by repression of its negative regulator miR-26a,” Blood, vol. 112, no. 10, pp. 4202–4212, 2008. View at Publisher · View at Google Scholar
  95. S. U. Morton, P. J. Scherz, K. R. Cordes, K. N. Ivey, D. Y. R. Stainier, and D. Srivastava, “microRNA-138 modulates cardiac patterning during embryonic development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 46, pp. 17830–17835, 2008. View at Publisher · View at Google Scholar
  96. Y. Guo, Z. Chen, L. Zhang, et al., “Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma,” Cancer Research, vol. 68, no. 1, pp. 26–33, 2008. View at Publisher · View at Google Scholar
  97. Y. Ladeiro, G. Couchy, C. Balabaud, et al., “MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations,” Hepatology, vol. 47, no. 6, pp. 1955–1963, 2008. View at Publisher · View at Google Scholar
  98. R. Garzon, F. Pichiorri, T. Palumbo, et al., “MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia,” Oncogene, vol. 26, no. 28, pp. 4148–4157, 2007. View at Publisher · View at Google Scholar
  99. C. Mascaux, J. F. Laes, G. Anthoine, et al., “Evolution of microRNA expression during human bronchial squamous carcinogenesis,” European Respiratory Journal, vol. 33, no. 2, pp. 352–359, 2009. View at Publisher · View at Google Scholar
  100. A. M. Fletcher, A. C. Heaford, and D. K. Trask, “Detection of metastatic head and neck squamous cell carcinoma using the relative expression of tissue-specific mir-205,” Translational Oncology, vol. 1, no. 4, pp. 202–208, 2008.
  101. K. W. Chang, C. J. Liu, T. H. Chu, et al., “Association between high miR-211 microRNA expression and the poor prognosis of oral carcinoma,” Journal of Dental Research, vol. 87, no. 11, pp. 1063–1068, 2008. View at Publisher · View at Google Scholar
  102. L. Döbróssy, “Epidemiology of head and neck cancer: magnitude of the problem,” Cancer and Metastasis Reviews, vol. 24, no. 1, pp. 9–17, 2005. View at Publisher · View at Google Scholar
  103. J. Tímár, O. Csuka, É. Remenár, G. Répássy, and M. Kásler, “Progression of head and neck squamous cell cancer,” Cancer and Metastasis Reviews, vol. 24, no. 1, pp. 107–127, 2005. View at Publisher · View at Google Scholar
  104. S. G. Patel and J. P. Shah, “Results of treatment,” in Oral Cancer, J. P. Shah, N. W. Johnson, and J. G. Batsakis, Eds., pp. 387–394, Martin Dunitz, London, UK, 2003.
  105. M. J. Zelefsky, L. B. Harrison, D. E. Fass, et al., “Postoperative radiotherapy for oral cavity cancers: impact of anatomic subsite on treatment outcome,” Head & Neck, vol. 12, no. 6, pp. 470–475, 1990. View at Publisher · View at Google Scholar
  106. D. Franceschi, R. Gupta, R. H. Spiro, and J. P. Shah, “Improved survival in the treatment of squamous carcinoma of the oral tongue,” The American Journal of Surgery, vol. 166, no. 4, pp. 360–365, 1993. View at Publisher · View at Google Scholar
  107. A. R. Fakih, R. S. Rao, A. M. Borges, and A. R. Patel, “Elective versus therapeutic neck dissection in early carcinoma of the oral tongue,” The American Journal of Surgery, vol. 158, no. 4, pp. 309–313, 1989.