About this Journal Submit a Manuscript Table of Contents
Comparative and Functional Genomics
Volume 2012 (2012), Article ID 569731, 12 pages
http://dx.doi.org/10.1155/2012/569731
Research Article

Interactome of Radiation-Induced microRNA-Predicted Target Genes

Department of Medical Laboratory and Radiation Sciences, University of Vermont, 302 Rowell Building, Burlington, VT 05405, USA

Received 26 March 2012; Accepted 19 April 2012

Academic Editor: Giulia Piaggio

Copyright © 2012 Tenzin W. Lhakhang and M. Ahmad Chaudhry. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. I. Almeida, R. M. Reis, and G. A. Calin, “MicroRNA history: discovery, recent applications, and next frontiers,” Mutation Research, vol. 717, no. 1-2, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Brodersen and O. Voinnet, “Revisiting the principles of microRNA target recognition and mode of action,” Nature Reviews Molecular Cell Biology, vol. 10, no. 2, pp. 141–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Ku and M. T. McManus, “Behind the scenes of a small RNA gene-silencing pathway,” Human Gene Therapy, vol. 19, no. 1, pp. 17–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Huang, X. J. Shen, Q. Zou, S. P. Wang, S. M. Tang, and G. Z. Zhang, “Biological functions of microRNAs: a review,” Journal of Physiology and Biochemistry, vol. 67, no. 1, pp. 129–139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. T. A. Farazi, J. I. Spitzer, P. Morozov, and T. Tuschl, “miRNAs in human cancer,” Journal of Pathology, vol. 223, no. 2, pp. 102–115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Chin, W. C. Hahn, G. Getz, and M. Meyerson, “Making sense of cancer genomic data,” Genes and Development, vol. 25, no. 6, pp. 534–555, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Chaudhry, “Bystander effect: biological endpoints and microarray analysis,” Mutation Research, vol. 597, no. 1-2, pp. 98–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Chaudhry, “Biomarkers for human radiation exposure,” Journal of Biomedical Science, vol. 15, no. 5, pp. 557–563, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Chaudhry, “Radiation-induced gene expression profile of human cells deficient in 8-hydroxy-2′-deoxyguanine glycosylase,” International Journal of Cancer, vol. 118, no. 3, pp. 633–642, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. K. L. Leung and P. A. Sharp, “MicroRNA functions in stress responses,” Molecular Cell, vol. 40, no. 2, pp. 205–215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. I. A. Babar, F. J. Slack, and J. B. Weidhaas, “miRNA modulation of the cellular stress response,” Future Oncology, vol. 4, no. 2, pp. 289–298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Chaudhry, “Real-time PCR analysis of micro-RNA expression in ionizing radiation-treated cells,” Cancer Biotherapy and Radiopharmaceuticals, vol. 24, no. 1, pp. 49–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. A. Chaudhry, B. Kreger, and R. A. Omaruddin, “Transcriptional modulation of micro-RNA in human cells differing in radiation sensitivity,” International Journal of Radiation Biology, vol. 86, no. 7, pp. 569–583, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Chaudhry, H. Sachdeva, and R. A. Omaruddin, “Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways,” DNA and Cell Biology, vol. 29, no. 9, pp. 553–561, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Wagner-Ecker, C. Schwager, U. Wirkner, A. Abdollahi, and P. E. Huber, “MicroRNA expression after ionizing radiation in human endothelial cells,” Radiation Oncology, vol. 5, no. 1, article 25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. H. Jeong, H. G. Wu, and W. Y. Park, “LIN28B confers radio-resistance through the posttranscriptional control of KRAS,” Experimental and Molecular Medicine, vol. 41, no. 12, pp. 912–918, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. O. C. Maes, J. An, H. Sarojini, H. Wu, and E. Wang, “Changes in microRNA expression patterns in human fibroblasts after low-LET radiation,” Journal of Cellular Biochemistry, vol. 105, no. 3, pp. 824–834, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Josson, S. Y. Sung, K. Lao, L. W. K. Chung, and P. A. S. Johnstone, “Radiation modulation of microRNA in prostate cancer cell lines,” Prostate, vol. 68, no. 15, pp. 1599–1606, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Shin, H. J. Cha, E. M. Lee et al., “MicroRNAs are significantly influenced by p53 and radiation in HCT116 human colon carcinoma cells,” International Journal of Oncology, vol. 34, no. 6, pp. 1645–1652, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. J. Cha, S. Shin, H. Yoo et al., “Identification of ionizing radiation-responsive microRNAs in the IM9 human B lymphoblastic cell line,” International Journal of Oncology, vol. 34, no. 6, pp. 1661–1668, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. J. Cha, K. M. Seong, S. Bae et al., “Identification of specific microRNAs responding to low and high dose γ-irradiation in the human lymphoblast line IM9,” Oncology Reports, vol. 22, no. 4, pp. 863–868, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Shin, H. J. Cha, E. M. Lee et al., “Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells,” International Journal of Oncology, vol. 35, no. 1, pp. 81–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. N. L. Simone, B. P. Soule, D. Ly et al., “Ionizing radiation-induced oxidative stress alters miRNA expression,” PLoS ONE, vol. 4, no. 7, Article ID e6377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. C. J. Marsit, K. Eddy, and K. T. Kelsey, “MicroRNA responses to cellular stress,” Cancer Research, vol. 66, no. 22, pp. 10843–10848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Wang, “miRDB: a microRNA target prediction and functional annotation database with a wiki interface,” RNA, vol. 14, no. 6, pp. 1012–1017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. J. Allalunis-Turner, G. M. Barron, R. S. Day III, K. D. Dobler, and R. Mirzayans, “Isolation of two cell lines from a human malignant glioma specimen differing in sensitivity to radiation and chemotherapeutic drugs,” Radiation Research, vol. 134, no. 3, pp. 349–354, 1993. View at Scopus
  27. J. L. Schwartz, R. Jordan, and H. H. Evans, “Characteristics of chromosome instability in the human lymphoblast cell line WTK1,” Cancer Genetics and Cytogenetics, vol. 129, no. 2, pp. 124–130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. J. S. Oh, J. J. Kim, J. Y. Byun, and I. A. Kim, “Lin28-let7 modulates radiosensitivity of human cancer cells with activation of K-Ras,” International Journal of Radiation Oncology Biology Physics, vol. 76, no. 1, pp. 5–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. G. A. Calin, C. D. Dumitru, M. Shimizu et al., “Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15524–15529, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Cimmino, G. A. Calin, M. Fabbri et al., “miR-15 and miR-16 induce apoptosis by targeting BCL2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 39, pp. 13944–13949, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Yanaihara, N. Caplen, E. Bowman et al., “Unique microRNA molecular profiles in lung cancer diagnosis and prognosis,” Cancer Cell, vol. 9, no. 3, pp. 189–198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Xi, J. R. Edwards, and J. Ju, “Investigation of miRNA biology by bioinformatic tools and impact of miRNAs in colorectal cancer—regulatory relationship of c-Myc and p53 with miRNAs,” Cancer Informatics, vol. 3, pp. 245–253, 2007. View at Scopus
  33. P. Dent, A. Yacoub, P. B. Fisher, M. P. Hagan, and S. Grant, “MAPK pathways in radiation responses,” Oncogene, vol. 22, no. 37, pp. 5885–5896, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Yue, Q. Wang, H. Lu, M. Brenneman, F. Fan, and Z. Shen, “The cytoskeleton protein filamin-A is required for an efficient recombinational DNA double strand break repair,” Cancer Research, vol. 69, no. 20, pp. 7978–7985, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. D. A. Gewirtz, M. L. Hilliker, and E. N. Wilson, “Promotion of autophagy as a mechanism for radiation sensitization of breast tumor cells,” Radiotherapy and Oncology, vol. 92, no. 3, pp. 323–328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Berndt, T. Kurz, M. Selenius, A. P. Fernandes, M. R. Edgren, and U. T. Brunk, “Chelation of lysosomal iron protects against ionizing radiation,” Biochemical Journal, vol. 432, no. 2, pp. 295–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Sakurai, T. Ueda, M. Kawai, H. Tobita, and J. Miyakoshi, “Protective effects of insulin-like growth factor-I on the decrease in myogenic differentiation by ionizing radiation,” International Journal of Radiation Biology, vol. 85, no. 2, pp. 153–158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. S. W. Ryter, P. K. Hong, A. Hoetzel et al., “Mechanisms of cell death in oxidative stress,” Antioxidants and Redox Signaling, vol. 9, no. 1, pp. 49–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. X. P. Zhang, F. Liu, and W. Wang, “Two-phase dynamics of p53 in the DNA damage response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 22, pp. 8990–8995, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. K. L. Andarawewa, J. Paupert, A. Pal, and M. H. Barcellos-Hoff, “New rationales for using TGFβ inhibitors in radiotherapy,” International Journal of Radiation Biology, vol. 83, no. 11-12, pp. 803–811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Ishikawa, H. Ishii, and T. Saito, “DNA damage-dependent cell cycle checkpoints and genomic stability,” DNA and Cell Biology, vol. 25, no. 7, pp. 406–411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. A. D. de Carvalho, W. de Souza, and J. A. Morgado-Díaz, “Morphological and molecular alterations at the junctional complex in irradiated human colon adenocarcinoma cells, Caco-2,” International Journal of Radiation Biology, vol. 82, no. 9, pp. 658–668, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. V. Sandfort, U. Koch, and N. Cordes, “Cell adhesion-mediated radioresistance revisited,” International Journal of Radiation Biology, vol. 83, no. 11-12, pp. 727–732, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Pesty, M. Doussau, J. B. Lahaye, and B. Lefèvre, “Whole-body or isolated ovary 60Co irradiation: effects on in vivo and in vitro folliculogenesis and oocyte maturation,” Reproductive Toxicology, vol. 29, no. 1, pp. 93–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. D. B. Richardson and G. Hamra, “Ionizing radiation and kidney cancer among Japanese atomic bomb survivors,” Radiation Research, vol. 173, no. 6, pp. 837–842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. P. D. Inskip, A. Ekbom, M. R. Galanti, L. Grimelius, and J. D. Boice Jr., “Medical diagnostic x rays and thyroid cancer,” Journal of the National Cancer Institute, vol. 87, no. 21, pp. 1613–1621, 1995. View at Scopus
  47. T. Kang, Y. Wei, Y. Honaker et al., “GSK-3β targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3β inactivation correlates with Cdc25A overproduction in human cancers,” Cancer Cell, vol. 13, no. 1, pp. 36–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Fakitsas, G. Adam, D. Daidié et al., “Early aldosterone-induced gene product regulates the epithelial sodium channel by deubiquitylation,” Journal of the American Society of Nephrology, vol. 18, no. 4, pp. 1084–1092, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Barna, N. Hawe, L. Niswander, and P. P. Pandolfi, “Plzf regulates limb and axial skeletal patterning,” Nature Genetics, vol. 25, no. 2, pp. 166–172, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Puglielli, “Aging of the brain, neurotrophin signaling, and Alzheimer's disease: is IGF1-R the common culprit?” Neurobiology of Aging, vol. 29, no. 6, pp. 795–811, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. J. A. Blundon and S. S. Zakharenko, “Dissecting the components of long-term potentiation,” Neuroscientist, vol. 14, no. 6, pp. 598–608, 2008. View at Publisher · View at Google Scholar · View at Scopus