International Journal of Genomics http://www.hindawi.com The latest articles from Hindawi Publishing Corporation © 2014 , Hindawi Publishing Corporation . All rights reserved. A Meta-Analysis on the Relations between EGFR R521K Polymorphism and Risk of Cancer Tue, 21 Oct 2014 00:00:00 +0000 http://www.hindawi.com/journals/ijg/2014/312102/ The EGFR R521K polymorphism has been shown to reduce the activity of EGFR; however, the association between EGFR R521K polymorphism and the risk of cancer remains inconclusive; therefore we performed a meta-analysis to evaluate the relationship between EGFR R521K polymorphism and susceptibility to cancer. Our results suggest that the EGFR R521K polymorphism is not associated with risk of cancer, but the different chemosensitivity to anticancer drugs may need further investigation. Yinsheng Wang, Lidan Zha, Dan Liao, and Xiaozhi Li Copyright © 2014 Yinsheng Wang et al. All rights reserved. Identification and Characterization of Microsatellites in Expressed Sequence Tags and Their Cross Transferability in Different Plants Sun, 19 Oct 2014 07:21:56 +0000 http://www.hindawi.com/journals/ijg/2014/863948/ Expressed sequence tags (EST) are potential source for the development of genic microsatellite markers, gene discovery, comparative genomics, and other genomic studies. In the present study, 7630 ESTs were examined from NCBI for SSR identification and characterization. A total of 263 SSRs were identified with an average density of one SSR/4.2 kb (3.4% frequency). Analysis revealed that trinucleotide repeats (47.52%) were most abundant followed by tetranucleotide (19.77%), dinucleotide (19.01%), pentanucleotide (9.12%), and hexanucleotide repeats (4.56%). Functional annotation was done through homology search and gene ontology, and 35 EST-SSRs were selected. Primer pairs were designed for evaluation of cross transferability and polymorphism among 11 plants belonging to five different families. Total 402 alleles were generated at 155 loci with an average of 2.6 alleles/locus and the polymorphic information content (PIC) ranged from 0.15 to 0.92 with an average of 0.75. The cross transferability ranged from 34.84% to 98.06% in different plants, with an average of 67.86%. Thus, the validation study of annotated 35 EST-SSR markers which correspond to particular metabolic activity revealed polymorphism and evolutionary nature in different families of Angiospermic plants. Shamshad ul Haq, Rohit Jain, Meenakshi Sharma, Sumita Kachhwaha, and S. L. Kothari Copyright © 2014 Shamshad ul Haq et al. All rights reserved. Genomic Changes in an Attenuated ZB Strain of Foot-and-Mouth Disease Virus Serotype Asia1 and Comparison with Its Virulent Parental Strain Sun, 19 Oct 2014 00:00:00 +0000 http://www.hindawi.com/journals/ijg/2014/978609/ The molecular basis of attenuation of foot-and-mouth disease virus (FMDV) serotype Asia1 ZB strain remains unknown. To understand the genetic changes of attenuation, we compared the entire genomes of three different rabbit-passaged attenuated ZB strains (ZB/CHA/58(att), ZBRF168, and ZBRF188) and their virulent parental strains (ZBCF22 and YNBS/58). The results showed that attenuation may be brought about by 28 common amino acid substitutions in the coding region, with one nucleotide point mutation in the 5′-untranslated region (5′-UTR) and another one in the 3′-UTR. In addition, a total of 21 nucleotides silent mutations had been found after attenuation. These substitutions, alone or in combination, may be responsible for the attenuated phenotype of the ZB strain in cattle. This will contribute to elucidation of attenuating molecular basis of the FMDV ZB strain. Aiguo Xin, Mingwang Zhu, Zhenqi Peng, Qi Hu, Chenhong Shi, Defang Liao, Jihua Wang, and Huachun Li Copyright © 2014 Aiguo Xin et al. All rights reserved. In Silico Genome Comparison and Distribution Analysis of Simple Sequences Repeats in Cassava Mon, 13 Oct 2014 08:04:30 +0000 http://www.hindawi.com/journals/ijg/2014/471461/ We conducted a SSRs density analysis in different cassava genomic regions. The information obtained was useful to establish comparisons between cassava’s SSRs genomic distribution and those of poplar, flax, and Jatropha. In general, cassava has a low SSR density (~50 SSRs/Mbp) and has a high proportion of pentanucleotides, (24,2 SSRs/Mbp). It was found that coding sequences have 15,5 SSRs/Mbp, introns have 82,3 SSRs/Mbp, 5′ UTRs have 196,1 SSRs/Mbp, and 3′ UTRs have 50,5 SSRs/Mbp. Through motif analysis of cassava’s genome SSRs, the most abundant motif was AT/AT while in intron sequences and UTRs regions it was AG/CT. In addition, in coding sequences the motif AAG/CTT was also found to occur most frequently; in fact, it is the third most used codon in cassava. Sequences containing SSRs were classified according to their functional annotation of Gene Ontology categories. The identified SSRs here may be a valuable addition for genetic mapping and future studies in phylogenetic analyses and genomic evolution. Andrea Vásquez and Camilo López Copyright © 2014 Andrea Vásquez and Camilo López. All rights reserved. Epigenetic Dynamics: Role of Epimarks and Underlying Machinery in Plants Exposed to Abiotic Stress Thu, 18 Sep 2014 05:23:22 +0000 http://www.hindawi.com/journals/ijg/2014/187146/ Abiotic stress induces several changes in plants at physiological and molecular level. Plants have evolved regulatory mechanisms guided towards establishment of stress tolerance in which epigenetic modifications play a pivotal role. We provide examples of gene expression changes that are brought about by conversion of active chromatin to silent heterochromatin and vice versa. Methylation of CG sites and specific modification of histone tail determine whether a particular locus is transcriptionally active or silent. We present a lucid review of epigenetic machinery and epigenetic alterations involving DNA methylation, histone tail modifications, chromatin remodeling, and RNA directed epigenetic changes. Manoj Kumar Dhar, Parivartan Vishal, Rahul Sharma, and Sanjana Kaul Copyright © 2014 Manoj Kumar Dhar et al. All rights reserved. Transcriptome of the Deep-Sea Black Scabbardfish, Aphanopus carbo (Perciformes: Trichiuridae): Tissue-Specific Expression Patterns and Candidate Genes Associated to Depth Adaptation Wed, 17 Sep 2014 08:40:55 +0000 http://www.hindawi.com/journals/ijg/2014/267482/ Deep-sea fishes provide a unique opportunity to study the physiology and evolutionary adaptation to extreme environments. We carried out a high throughput sequencing analysis on a 454 GS-FLX titanium plate using unnormalized cDNA libraries from six tissues of A. carbo. Assemblage and annotations were performed by Newbler and InterPro/Pfam analyses, respectively. The assembly of 544,491 high quality reads provided 8,319 contigs, 55.6% of which retrieved blast hits against the NCBI nonredundant database or were annotated with ESTscan. Comparison of functional genes at both the protein sequences and protein stability levels, associated with adaptations to depth, revealed similarities between A. carbo and other bathypelagic fishes. A selection of putative genes was standardized to evaluate the correlation between number of contigs and their normalized expression, as determined by qPCR amplification. The screening of the libraries contributed to the identification of new EST simple-sequence repeats (SSRs) and to the design of primer pairs suitable for population genetic studies as well as for tagging and mapping of genes. The characterization of the deep-sea fish A. carbo first transcriptome is expected to provide abundant resources for genetic, evolutionary, and ecological studies of this species and the basis for further investigation of depth-related adaptation processes in fishes. Sergio Stefanni, Raul Bettencourt, Miguel Pinheiro, Gianluca De Moro, Lucia Bongiorni, and Alberto Pallavicini Copyright © 2014 Sergio Stefanni et al. All rights reserved. In Silico Identification, Phylogenetic and Bioinformatic Analysis of Argonaute Genes in Plants Mon, 15 Sep 2014 13:23:53 +0000 http://www.hindawi.com/journals/ijg/2014/967461/ Argonaute protein family is the key players in pathways of gene silencing and small regulatory RNAs in different organisms. Argonaute proteins can bind small noncoding RNAs and control protein synthesis, affect messenger RNA stability, and even participate in the production of new forms of small RNAs. The aim of this study was to characterize and perform bioinformatic analysis of Argonaute proteins in 32 plant species that their genome was sequenced. A total of 437 Argonaute genes were identified and were analyzed based on lengths, gene structure, and protein structure. Results showed that Argonaute proteins were highly conserved across plant kingdom. Phylogenic analysis divided plant Argonautes into three classes. Argonaute proteins have three conserved domains PAZ, MID and PIWI. In addition to three conserved domains namely, PAZ, MID, and PIWI, we identified few more domains in AGO of some plant species. Expression profile analysis of Argonaute proteins showed that expression of these genes varies in most of tissues, which means that these proteins are involved in regulation of most pathways of the plant system. Numbers of alternative transcripts of Argonaute genes were highly variable among the plants. A thorough analysis of large number of putative Argonaute genes revealed several interesting aspects associated with this protein and brought novel information with promising usefulness for both basic and biotechnological applications. Khaled Mirzaei, Bahman Bahramnejad, Mohammad Hasan Shamsifard, and Wahid Zamani Copyright © 2014 Khaled Mirzaei et al. All rights reserved. Unique Genotypic Differences Discovered among Indigenous Bangladeshi Rice Landraces Sun, 14 Sep 2014 07:03:09 +0000 http://www.hindawi.com/journals/ijg/2014/210328/ Bangladesh is a reservoir of diverse rice germplasm and is home to many landraces with unique, important traits. Molecular characterization of these landraces is of value for their identification, preservation, and potential use in breeding programs. Thirty-eight rice landraces from different regions of Bangladesh including some high yielding BRRI varieties were analyzed by 34 polymorphic microsatellite markers yielding a total of 258 reproducible alleles. The analysis could locate 34 unique identifiers for 21 genotypes, making the latter potentially amenable to identity verification. An identity map for these genotypes was constructed with all the 12 chromosomes of the rice genome. Polymorphism information content (PIC) scores of the 34 SSR markers were 0.098 to 0.89 where on average 7.5 alleles were observed. A dendogram constructed using UPGMA clustered the varieties into two major groups and five subgroups. In some cases, the clustering matched with properties like aromaticity, stickiness, salt tolerance, and photoperiod insensitivity. The results will help breeders to work towards the proper utilization of these landraces for parental selection and linkage map construction for discovery of useful alleles. Nusrat Yesmin, Sabrina M. Elias, Md. Sazzadur Rahman, Taslima Haque, A. K. M. Mahbub Hasan, and Zeba I. Seraj Copyright © 2014 Nusrat Yesmin et al. All rights reserved. Changes in Oleic Acid Content of Transgenic Soybeans by Antisense RNA Mediated Posttranscriptional Gene Silencing Wed, 13 Aug 2014 06:36:20 +0000 http://www.hindawi.com/journals/ijg/2014/921950/ The Delta-12 oleate desaturase gene (FAD2-1), which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of seed oil. In this study, we inhibited the expression of endogenous Delta-12 oleate desaturase GmFad2-1b gene by using antisense RNA in soybean Williams 82. By employing the soybean cotyledonary-node method, a part of the cDNA of soybean GmFad2-1b 801 bp was cloned for the construction of a pCAMBIA3300 vector under the soybean seed promoter BCSP. Leaf painting, LibertyLink strip, PCR, Southern blot, qRT-PCR, and fatty acid analysis were used to detect the insertion and expression of GmFad2-1b in the transgenic soybean lines. The results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 51.71%) and a reduction in palmitic acid (to <3%) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and the nontransgenic oil extracts. Ling Zhang, Xiang-dong Yang, Yuan-yu Zhang, Jing Yang, Guang-xun Qi, Dong-quan Guo, Guo-jie Xing, Yao Yao, Wen-jing Xu, Hai-yun Li, Qi-yun Li, and Ying-shan Dong Copyright © 2014 Ling Zhang et al. All rights reserved. Genome Sequencing of a Mung Bean Plant Growth Promoting Strain of P. aeruginosa with Biocontrol Ability Tue, 12 Aug 2014 00:00:00 +0000 http://www.hindawi.com/journals/ijg/2014/123058/ Pseudomonas aeruginosa PGPR2 is a mung bean rhizosphere strain that produces secondary metabolites and hydrolytic enzymes contributing to excellent antifungal activity against Macrophomina phaseolina, one of the prevalent fungal pathogens of mung bean. Genome sequencing was performed using the Ion Torrent Personal Genome Machine generating 1,354,732 reads (6,772,433 sequenced bases) achieving ~25-fold coverage of the genome. Reference genome assembly using MIRA 3.4.0 yielded 198 contigs. The draft genome of PGPR2 encoded 6803 open reading frames, of which 5314 were genes with predicted functions, 1489 were genes of known functions, and 80 were RNA-coding genes. Strain specific and core genes of P. aeruginosa PGPR2 that are relevant to rhizospheric habitat were identified by pangenome analysis. Genes involved in plant growth promoting function such as synthesis of ACC deaminase, indole-3-acetic acid, trehalose, mineral scavenging siderophores, hydrogen cyanide, chitinases, acyl homoserine lactones, acetoin, 2,3-butanediol, and phytases were identified. In addition, niche-specific genes such as phosphate solubilising 3-phytase, adhesins, pathway-specific transcriptional regulators, a diguanylate cyclase involved in cellulose synthesis, a receptor for ferrienterochelin, a DEAD/DEAH-box helicase involved in stress tolerance, chemotaxis/motility determinants, an HtpX protease, and enzymes involved in the production of a chromanone derivative with potent antifungal activity were identified. Devaraj Illakkiam, Manoharan Shankar, Paramasivan Ponraj, Jeyaprakash Rajendhran, and Paramasamy Gunasekaran Copyright © 2014 Devaraj Illakkiam et al. All rights reserved. Isolation and Characterisation of PRSV-P Resistance Genes in Carica and Vasconcellea Mon, 11 Aug 2014 08:10:44 +0000 http://www.hindawi.com/journals/ijg/2014/145403/ Papaya (Carica papaya L.) is one of the major tropical fruit crops worldwide, but it is limited throughout its range by papaya ringspot virus type P (PRSV-P). Previous genetic studies identified a functional PRSV-P resistance marker in a mapping population of F2 plants of Vasconcellea pubescens (resistant to PRSV-P) × Vasconcellea parviflora (susceptible to PRSV-P) and showed that the marker exhibited homology to a serine threonine protein kinase (STK) gene. Full length cDNAs of putative PRSV-P resistance genes designated CP_STK from C. papaya and VP_STK1 and VP_STK2 from V. pubescens were cloned by rapid amplification of cDNA ends (RACE). Due to a frame-shift mutation, the two homologous sequences are transcribed and edited differently such that the gene product in V. pubescens is two separate transcripts, whereas in C. papaya they are fused into a single message. A peroxisomal targeting signal (PTS2) present in VP_STK2 but absent in the other transcripts may be the functional source of PRSV resistance in V. pubescens. The STK gene from V. pubescens may have been derived from an alternative splicing to confer resistance. The putative resistance gene, VP_STK2, that was identified in this study is a potential new source of PRSV-P resistance for papaya genotypes. M. R. Razean Haireen and R. A. Drew Copyright © 2014 M. R. Razean Haireen and R. A. Drew. All rights reserved. Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation Sun, 10 Aug 2014 09:24:35 +0000 http://www.hindawi.com/journals/ijg/2014/970607/ Discovered in 1993, micoRNAs (miRNAs) are now recognized as one of the major regulatory gene families in eukaryotes. To date, 24521 microRNAs have been discovered and there are certainly more to come. It was primarily acknowledged that miRNAs result in gene expression repression at both the level of mRNA stability by conducting mRNA degradation and the level of translation (at initiation and after initiation) by inhibiting protein translation or degrading the polypeptides through binding complementarily to 3′UTR of the target mRNAs. Nevertheless, some studies revealed that miRNAs have the capability of activating gene expression directly or indirectly in respond to different cell types and conditions and in the presence of distinct cofactors. This reversibility in their posttranslational gene regulatory natures enables the bearing cells to rapidly response to different cell conditions and consequently block unnecessary energy wastage or maintain the cell state. This paper provides an overview of the current understandings of the miRNA characteristics including their genes and biogenesis, as well as their mediated downregulation. We also review up-to-date knowledge of miRNA-mediated gene upregulation through highlighting some notable examples and discuss the emerging concepts of their associations with other posttranscriptional gene regulation processes. Ayla Valinezhad Orang, Reza Safaralizadeh, and Mina Kazemzadeh-Bavili Copyright © 2014 Ayla Valinezhad Orang et al. All rights reserved. Identification of Multiple Soluble Fe(III) Reductases in Gram-Positive Thermophilic Bacterium Thermoanaerobacter indiensis BSB-33 Thu, 07 Aug 2014 09:14:25 +0000 http://www.hindawi.com/journals/ijg/2014/850607/ Thermoanaerobacter indiensis BSB-33 has been earlier shown to reduce Fe(III) and Cr(VI) anaerobically at 60°C optimally. Further, the Gram-positive thermophilic bacterium contains Cr(VI) reduction activity in both the membrane and cytoplasm. The soluble fraction prepared from T. indiensis cells grown at 60°C was found to contain the majority of Fe(III) reduction activity of the microorganism and produced four distinct bands in nondenaturing Fe(III) reductase activity gel. Proteins from each of these bands were partially purified by chromatography and identified by mass spectrometry (MS) with the help of T. indiensis proteome sequences. Two paralogous dihydrolipoamide dehydrogenases (LPDs), thioredoxin reductase (Trx), NADP(H)-nitrite reductase (Ntr), and thioredoxin disulfide reductase (Tdr) were determined to be responsible for Fe(III) reductase activity. Amino acid sequence and three-dimensional (3D) structural similarity analyses of the T. indiensis Fe(III) reductases were carried out with Cr(VI) reducing proteins from other bacteria. The two LPDs and Tdr showed very significant sequence and structural identity, respectively, with Cr(VI) reducing dihydrolipoamide dehydrogenase from Thermus scotoductus and thioredoxin disulfide reductase from Desulfovibrio desulfuricans. It appears that in addition to their iron reducing activity T. indiensis LPDs and Tdr are possibly involved in Cr(VI) reduction as well. Subrata Pal Copyright © 2014 Subrata Pal. All rights reserved. OPN Polymorphism Is Related to the Chemotherapy Response and Prognosis in Advanced NSCLC Tue, 05 Aug 2014 11:00:46 +0000 http://www.hindawi.com/journals/ijg/2014/846142/ Background. Osteopontin (OPN) is associated with prognosis of patients with non-small-cell lung cancer (NSCLC). However, little is known about the association between OPN gene polymorphism and the chemotherapy response in NSCLC patients. Methods. A total of 497 patients with inoperable advanced stage of NSCLC (stages III B and IV NSCLC) were enrolled. All patients had received platinum-based chemotherapy. OPN gene polymorphisms at 156 GG/G, 443 C/T, and −66T/G were determined. Results. The genotypes and allele frequency of −443C>T were significantly different between the responders and nonresponders. Responders had a markedly higher frequency of −443TT genotype than responders (40.71% versus 19.09%, ). With CC as reference, the TT genotype carriers had a higher chance to be well responders (adjusted , 95% CI: 2.60–7.53, adjusted ). The median overall survival time for patients with −443CC, −443CT, and −443TT genotype carriers was significantly different. Multivariate Cox proportional hazards regression models showed that OPN −443C>T gene polymorphisms were closely correlated to poor NSCLC prognosis. Conclusion. OPN −443C>T gene polymorphism may be used as a molecular marker to predict the treatment response to chemotherapy in advanced NSCLC patients. Yanzhang Hao, Jianwei Liu, Ping Wang, Feng Wang, Zeshun Yu, Mianli Li, Shaoshui Chen, and Fangling Ning Copyright © 2014 Yanzhang Hao et al. All rights reserved. Drug-Related Genomics in Cancer and Immunological Diseases Wed, 23 Jul 2014 06:28:35 +0000 http://www.hindawi.com/journals/ijg/2014/306980/ Ji-Fu Wei, Yong-Qing Wang, and Huai-Rong Luo Copyright © 2014 Ji-Fu Wei et al. All rights reserved. Compositional Constraint Is the Key Force in Shaping Codon Usage Bias in Hemagglutinin Gene in H1N1 Subtype of Influenza A Virus Thu, 17 Jul 2014 12:10:25 +0000 http://www.hindawi.com/journals/ijg/2014/349139/ It is vital to unravel the codon usage bias in order to gain insights into the evolutionary forces dictating the viral evolution process. Influenza A virus has attracted attention of many investigators over the years due to high mutation rate and being cross-specific shift operational in the viral genome. Several authors have reported that the codon usage bias is low in influenza A viruses, citing mutational pressure as the decisive force shaping up the codon usage in these viruses. In this study, complete coding sequences of hemagglutinin genes for H1N1 subtype of influenza A virus have been explored for the possible codon usage bias acting upon these genes. The results indicate overall low bias with peaking ENC values. The GC content is found to be substantially low as against AT content in the silent codon sites. Significant correlations were observed in between the compositional parameters versus AT3, implying the possible role of the latter in shaping codon usage profile in the viral hemagglutinin. The data showed conspicuously that the sequences were A redundant with most codons preferring nucleotide A over others in the third synonymous codon site. The results indicated the pivotal role of compositional pressure affecting codon usage in this virus. Himangshu Deka and Supriyo Chakraborty Copyright © 2014 Himangshu Deka and Supriyo Chakraborty. All rights reserved. Comparative Analysis of Glycogene Expression in Different Mouse Tissues Using RNA-Seq Data Wed, 09 Jul 2014 14:17:28 +0000 http://www.hindawi.com/journals/ijg/2014/837365/ Glycogenes regulate a wide array of biological processes in the development of organisms as well as different diseases such as cancer, primary open-angle glaucoma, and renal dysfunction. The objective of this study was to explore the role of differentially expressed glycogenes (DEGGs) in three major tissues such as brain, muscle, and liver using mouse RNA-seq data, and we identified 579, 501, and 442 DEGGs for brain versus liver (BvL579), brain versus muscle (BvM501), and liver versus muscle (LvM442) groups. DAVID functional analysis suggested inflammatory response, glycosaminoglycan metabolic process, and protein maturation as the enriched biological processes in BvL579, BvM501, and LvM442, respectively. These DEGGs were then used to construct three interaction networks by using GeneMANIA, from which we detected potential hub genes such as PEMT and HPXN (BvL579), IGF2 and NID2 (BvM501), and STAT6 and FLT1 (LvM442), having the highest degree. Additionally, our community analysis results suggest that the significance of immune system related processes in liver, glycosphingolipid metabolic processes in the development of brain, and the processes such as cell proliferation, adhesion, and growth are important for muscle development. Further studies are required to confirm the role of predicted hub genes as well as the significance of biological processes. Ahmad Firoz, Adeel Malik, Sanjay Kumar Singh, Vivekanand Jha, and Amjad Ali Copyright © 2014 Ahmad Firoz et al. All rights reserved. Associations of CTLA4 Gene Polymorphisms with Graves’ Ophthalmopathy: A Meta-Analysis Wed, 09 Jul 2014 06:40:59 +0000 http://www.hindawi.com/journals/ijg/2014/537969/ Many studies have established that T-lymphocyte antigen-4 (CTLA4) is a susceptible gene for Graves’ disease (GD). Also many studies showed the association between the CTLA4 exon-1 49A/G polymorphism and the risk of developing Graves’ ophthalmopathy (GO) in GD patients. But those results were inconsistent. In recent years many new studies were published which helped to shed light on the relationship of CTLA4 SNP49 with GO. So we performed the meta-analysis to explore the association between the SNP49 and GO susceptibility in GD patients. Studies up to February 29, 2012, were searched by using PubMed. The odds ratio was used to evaluate the strength of the association. Altogether 12 case-control studies involving 2,505 participants were included in the meta-analysis. Results showed that the G allele was related to the increased risk of GO compared with the A allele under allelic genetic model (OR = 1.14, 95% CI: 1.14–1.72, ) in European subgroup. No publication bias was detected. Our results showed that the SNP49 polymorphism of CTLA4 gene was related to increased risk of GO. Pengfei Du, Xiaojie Ma, and Changjiang Wang Copyright © 2014 Pengfei Du et al. All rights reserved. Identification of Differentially Expressed Gene after Femoral Fracture via Microarray Profiling Tue, 08 Jul 2014 08:17:44 +0000 http://www.hindawi.com/journals/ijg/2014/208751/ We aimed to investigate differentially expressed genes (DEGs) in different stages after femoral fracture based on rat models, providing the basis for the treatment of sport-related fractures. Gene expression data GSE3298 was downloaded from Gene Expression Omnibus (GEO), including 16 chips. All femoral fracture samples were classified into earlier fracture stage and later fracture stage. Total 87 DEGs simultaneously occurred in two stages, of which 4 genes showed opposite expression tendency. Out of the 4 genes, Rest and Cst8 were hub nodes in protein-protein interaction (PPI) network. The GO (Gene Ontology) function enrichment analysis verified that nutrition supply related genes were enriched in the earlier stage and neuron growth related genes were enriched in the later stage. Calcium signaling pathway was the most significant pathway in earlier stage; in later stage, DEGs were enriched into 2 neurodevelopment-related pathways. Analysis of Pearson's correlation coefficient showed that a total of 3,300 genes were significantly associated with fracture time, none of which was overlapped with identified DEGs. This study suggested that Rest and Cst8 might act as potential indicators for fracture healing. Calcium signaling pathway and neurodevelopment-related pathways might be deeply involved in bone healing after femoral fracture. Donggen Zhong Copyright © 2014 Donggen Zhong. All rights reserved. Coexpression within Integrated Mitochondrial Pathways Reveals Different Networks in Normal and Chemically Treated Transcriptomes Tue, 24 Jun 2014 12:06:20 +0000 http://www.hindawi.com/journals/ijg/2014/452891/ As energy producers, mitochondria play a pivotal role in multiple cellular processes. Although several lines of evidence suggest that differential expression of mitochondrial respiratory complexes (MRCs) has a significant impact on mitochondrial function, the role of integrated MRCs in the whole coexpression network has yet to be revealed. In this study, we construct coexpression networks based on microarray datasets from different tissues and chemical treatments to explore the role of integrated MRCs in the coexpression network and the effects of different chemicals on the mitochondrial network. By grouping MRCs as one seed target, the hypergeometric distribution allowed us to identify genes that are significantly coexpress with whole MRCs. Coexpression among 46 MRC genes (approximately 78% of MRC genes tested) was significant in the normal tissue transcriptome dataset. These MRC genes are coexpressed with genes involved in the categories “muscle system process,” “metabolic process,” and “neurodegenerative disease pathways,” whereas, in the chemically treated tissues, coexpression of these genes mostly disappeared. These results indicate that chemical stimuli alter the normal coexpression network of MRC genes. Taken together, the datasets obtained from the different coexpression networks are informative about mitochondrial biogenesis and should contribute to understanding the side effects of drugs on mitochondrial function. Cong Chen, Tae Kyung Hyun, Xiao Han, Zhihui Feng, Yuan Li, Xiaolong Liu, and Jiankang Liu Copyright © 2014 Cong Chen et al. All rights reserved. High Expression of Polo-Like Kinase 1 Is Associated with Early Development of Hepatocellular Carcinoma Wed, 11 Jun 2014 11:59:55 +0000 http://www.hindawi.com/journals/ijg/2014/312130/ Polo-like kinase 1 (PLK1), one of serine/threonine-protein kinase, has been demonstrated to play pivotal roles in malignant transformation. Here we illustrated the clinicopathological significance of PLK1 expression in hepatocellular carcinoma (HCC) in more detail. Immunohistochemistry was performed to detect the expression of PLK1 in 67 HCC patients as well as corresponding noncancerous liver tissues. In addition, the correlation of PLK1 expression with clinicopathological factors or prognosis of HCC was analyzed. Results showed that the expression of PLK1 was increased significantly in HCC tissues than that of corresponding normal liver tissues. The correlation between PLK1 and HCC cell differentiation or capsule invasion was also revealed. We found that PLK1 inhibition promoted cell arrest in G2/M phase of cell cycle and cell apoptosis. Our results also indicated that the potential mechanisms of PLK1 inhibition regulating cell growth involved enhancing expression of caspase3, caspase8, and Bax and decreasing expression of Bcl-2. Furthermore, we also found that PLK1 downregulation inducing inhibition of cell growth was associated with enhancing expression of p53. Thus, we presume that the status of PLK1 expression might be an independent prognostic factor for HCC and targeting PLK1 might be a useful strategy for diagnosis and treatment of human HCC. Wei Sun, Qi Su, Xiankui Cao, Bin Shang, Aishan Chen, Hongzhuan Yin, and Baolin Liu Copyright © 2014 Wei Sun et al. All rights reserved. Genetic Variations of Cytokines and Cytokine Receptors in Psoriasis Patients from China Sun, 25 May 2014 08:00:03 +0000 http://www.hindawi.com/journals/ijg/2014/870597/ Psoriasis is a chronic inflammatory and hyperproliferative skin disease affected by both genetic and environmental factors. The aim of the present study was to investigate polymorphisms in a candidate gene family of interleukin (IL) in unrelated Chinese patients with psoriasis and control subjects without psoriasis. In this case-control study, 200 unrelated Chinese psoriasis patients and 298 age- and sex-matched control subjects were enrolled. Genomic DNA was prepared from peripheral blood obtained from all psoriasis patients and control subjects. We genotyped seven single-nucleotide polymorphisms (SNPs) in candidate genes of six ILs: IL4, IL10, IL12B, IL13, IL15, and IL23R, which have been shown in the literature to be associated with psoriasis in other ethnic groups. Among the seven SNPs in the six IL genes studied, only the rs3212227 in the IL12B gene was found to be associated with psoriasis at genotypic level in the studied population. The C/C genotype in the IL12B gene is a protective factor of psoriasis (; OR = 0.51; 95% CI: 0.27–0.96) in Chinese. Furthermore, the studied Chinese population has extremely low minor allele frequency for IL23R. Together, the data reveal unique genetic patterns in Chinese that may be in part responsible for the lower risk for psoriasis in this population. Xiao-Lan Li, Chun-Feng Wu, and Gui-Sheng Wu Copyright © 2014 Xiao-Lan Li et al. All rights reserved. In Silico Prediction of T and B Cell Epitopes of Der f 25 in Dermatophagoides farinae Thu, 08 May 2014 00:00:00 +0000 http://www.hindawi.com/journals/ijg/2014/483905/ The house dust mites are major sources of indoor allergens for humans, which induce asthma, rhinitis, dermatitis, and other allergic diseases. Der f 25 is a triosephosphate isomerase, representing the major allergen identified in Dermatophagoides farinae. The objective of this study was to predict the B and T cell epitopes of Der f 25. In the present study, we analyzed the physiochemical properties, function motifs and domains, and structural-based detailed features of Der f 25 and predicted the B cell linear epitopes of Der f 25 by DNAStar protean system, BPAP, and BepiPred 1.0 server and the T cell epitopes by NetMHCIIpan-3.0 and NetMHCII-2.2. As a result, the sequence and structure analysis identified that Der f 25 belongs to the triosephosphate isomerase family and exhibited a triosephosphate isomerase pattern (PS001371). Eight B cell epitopes (11–18, 30–35, 71–77, 99–107, 132–138, 173–187, 193–197, and 211–224) and five T cell epitopes including 26–34, 38–54, 66–74, 142–151, and 239–247 were predicted in this study. These results can be used to benefit allergen immunotherapies and reduce the frequency of mite allergic reactions. Xiaohong Li, Hai-Wei Yang, Hao Chen, Jing Wu, Yehai Liu, and Ji-Fu Wei Copyright © 2014 Xiaohong Li et al. All rights reserved. Association between NFKB1 −94ins/del ATTG Promoter Polymorphism and Cancer Susceptibility: An Updated Meta-Analysis Wed, 07 May 2014 14:23:38 +0000 http://www.hindawi.com/journals/ijg/2014/612972/ Nuclear factor-κB is associated with the pathogenesis of numerous malignancies, and the functional polymorphism −94ins/del ATTG (rs28362491) in the human NFKB1 gene is associated with cancer risk. Previous studies on the association between the −94ins/del ATTG polymorphism and cancer risk reported conflicting results. To clarify this relationship, we performed a meta-analysis of 21 case-control studies involving 6127 cases and 9238 controls. We used pooled odds ratios (ORs) with their 95% confidence intervals (95% CIs) to assess the association. We found that the NFKB1 promoter −94ins/del ATTG polymorphism was significantly associated with cancer risk in four genetic models (ins/ins versus del/del, OR = 1.47, 95% CI = 1.11–1.93; dominant model, OR = 1.26, 95% CI = 1.03–1.53; recessive model, OR = 1.26, 95% CI = 1.05–1.51; ins allele versus del allele, OR = 1.19, 95% CI = 1.05–1.35). Stratified analyses revealed a significant association between the polymorphism and ovarian, oral, and prostate cancers. Similar results were determined in an Asian population and not in a Caucasian population. Thus, our results suggested that the polymorphism can contribute to cancer risk. Moreover, the polymorphism can exert race- and cancer-specific effects on cancer risk. Further large-scale and functional studies are necessary to elucidate this possible effect. Xiao Yang, Pengchao Li, Jun Tao, Chao Qin, Qiang Cao, Jinbao Gu, Xiaheng Deng, Jun Wang, Xuzhong Liu, Zijie Wang, Bian Wu, Min Gu, Qiang Lu, and Changjun Yin Copyright © 2014 Xiao Yang et al. All rights reserved. Identification and Expression Profiling of the BTB Domain-Containing Protein Gene Family in the Silkworm, Bombyx mori Tue, 06 May 2014 13:05:48 +0000 http://www.hindawi.com/journals/ijg/2014/865065/ The BTB domain is a conserved protein-protein interaction motif. In this study, we identified 56 BTB domain-containing protein genes in the silkworm, in addition to 46 in the honey bee, 55 in the red flour beetle, and 53 in the monarch butterfly. Silkworm BTB protein genes were classified into nine subfamilies according to their domain architecture, and most of them could be mapped on the different chromosomes. Phylogenetic analysis suggests that silkworm BTB protein genes may have undergone a duplication event in three subfamilies: BTB-BACK-Kelch, BTB-BACK-PHR, and BTB-FLYWCH. Comparative analysis demonstrated that the orthologs of each of 13 BTB protein genes present a rigorous orthologous relationship in the silkworm and other surveyed insects, indicating conserved functions of these genes during insect evolution. Furthermore, several silkworm BTB protein genes exhibited sex-specific expression in larval tissues or at different stages during metamorphosis. These findings not only contribute to a better understanding of the evolution of insect BTB protein gene families but also provide a basis for further investigation of the functions of BTB protein genes in the silkworm. Daojun Cheng, Wenliang Qian, Meng Meng, Yonghu Wang, Jian Peng, and Qingyou Xia Copyright © 2014 Daojun Cheng et al. All rights reserved. Upregulated PD-1 Expression Is Associated with the Development of Systemic Lupus Erythematosus, but Not the PD-1.1 Allele of the PDCD1 Gene Thu, 17 Apr 2014 12:08:07 +0000 http://www.hindawi.com/journals/ijg/2014/950903/ Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with complicated genetic inheritance. Programmed death 1 (PD-1), a negative T cell regulator to maintain peripheral tolerance, induces negative signals to T cells during interaction with its ligands and is therefore a candidate gene in the development of SLE. In order to examine whether expression levels of PD-1 contribute to the pathogenesis of SLE, 30 patients with SLE and 30 controls were recruited and their PD-1 expression levels in peripheral blood mononuclear cells (PBMCs) were measured via flow cytometry and quantitative real-time-reverse transcription polymerase chain reaction (RT-PCR). Also, whether PD-1 expression levels are associated with the variant of the SNP rs36084323 and the SLE Disease Activity Index (SLEDAI) was studied in this work. The PD-1 expression levels of SLE patients were significantly increased compared with those of the healthy controls. The upregulated PD-1 expression levels in SLE patients were greatly associated with SLEDAI scores. No significant difference was found between PD-1 expression levels and SNP rs36084323. The results suggest that increased expression of PD-1 may correlate with the pathogenesis of SLE, upregulated PD-1 expression may be a biomarker for SLE diagnosis, and PD-1 inhibitor may be useful to SLE treatment. Qingqing Jiao, Cuiping Liu, Ziliang Yang, Qiang Ding, Miaomiao Wang, Min Li, Tingting Zhu, Hua Qian, Wei Li, Na Tu, Fumin Fang, Licai Ye, Zuotao Zhao, and Qihong Qian Copyright © 2014 Qingqing Jiao et al. All rights reserved. Microarray Analysis of the Juvenile Hormone Response in Larval Integument of the Silkworm, Bombyx mori Sun, 06 Apr 2014 06:49:12 +0000 http://www.hindawi.com/journals/ijg/2014/426025/ Juvenile hormone (JH) coordinates with 20-hydroxyecdysone (20E) to regulate larval growth and molting in insects. However, little is known about how this cooperative control is achieved during larval stages. Here, we induced silkworm superlarvae by applying the JH analogue (JHA) methoprene and used a microarray approach to survey the mRNA expression changes in response to JHA in the silkworm integument. We found that JHA application significantly increased the expression levels of most genes involved in basic metabolic processes and protein processing and decreased the expression of genes associated with oxidative phosphorylation in the integument. Several key genes involved in the pathways of insulin/insulin-like growth factor signaling (IIS) and 20E signaling were also upregulated after JHA application. Taken together, we suggest that JH may mediate the nutrient-dependent IIS pathway by regulating various metabolic pathways and further modulate 20E signaling. Daojun Cheng, Jian Peng, Meng Meng, Ling Wei, Lixia Kang, Wenliang Qian, and Qingyou Xia Copyright © 2014 Daojun Cheng et al. All rights reserved. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization Thu, 03 Apr 2014 12:32:37 +0000 http://www.hindawi.com/journals/ijg/2014/701596/ Salinity is a major abiotic stress limiting growth and productivity of plants in many areas of the world due to increasing use of poor quality of water for irrigation and soil salinization. Plant adaptation or tolerance to salinity stress involves complex physiological traits, metabolic pathways, and molecular or gene networks. A comprehensive understanding on how plants respond to salinity stress at different levels and an integrated approach of combining molecular tools with physiological and biochemical techniques are imperative for the development of salt-tolerant varieties of plants in salt-affected areas. Recent research has identified various adaptive responses to salinity stress at molecular, cellular, metabolic, and physiological levels, although mechanisms underlying salinity tolerance are far from being completely understood. This paper provides a comprehensive review of major research advances on biochemical, physiological, and molecular mechanisms regulating plant adaptation and tolerance to salinity stress. Bhaskar Gupta and Bingru Huang Copyright © 2014 Bhaskar Gupta and Bingru Huang. All rights reserved. A Promoter Region Polymorphism in PDCD-1 Gene Is Associated with Risk of Rheumatoid Arthritis in the Han Chinese Population of Southeastern China Thu, 03 Apr 2014 09:03:11 +0000 http://www.hindawi.com/journals/ijg/2014/247637/ Objective. Programmed cell death 1 (PD-1) induces negative signals to T cells during interaction with its ligands and is therefore a candidate gene in the development of autoimmune diseases such as rheumatoid arthritis (RA). Herein, we investigate the association of PDCD-1 polymorphisms with the risk of RA among Chinese patients and healthy controls. Methods. Using the PCR-direct sequencing analysis, 4 PDCD-1 SNPs (rs36084323, rs11568821, rs2227982, and rs2227981) were genotyped in 320 RA patients and 309 matched healthy controls. Expression of PD-1 was determined in peripheral blood lymphocytes by flow cytometry and quantitative real-time reverse transcriptase polymerase chain reaction. Results. We observed that the GG genotype of rs36084323 was associated with a increased risk for developing RA (OR 1.70, 95% 1.11–2.61, ). Patients carrying G/G genotype displayed an increased mRNA level of PD-1 compared with A/A genotype and healthy controls. Meanwhile, patients homozygous for rs36084323 had induced basal PD-1 expression on activated CD4+ T cells. Conclusion. The PDCD-1 polymorphism rs36084323 was significantly associated with RA risk in Han Chinese population. This SNP, which effectively influenced the expression of PD-1, may be a biomarker of early diagnosis of RA and a suitable indicator of utilizing PD-1 inhibitor for treatment of RA. CuiPing Liu, JueAn Jiang, Li Gao, XiaoHan Hu, FengMing Wang, Yu Shen, GeHua Yu, ZuoTao Zhao, and XueGuang Zhang Copyright © 2014 CuiPing Liu et al. All rights reserved. Expression Data Analysis to Identify Biomarkers Associated with Asthma in Children Thu, 27 Mar 2014 09:40:08 +0000 http://www.hindawi.com/journals/ijg/2014/165175/ Asthma is characterized by recurrent episodes of wheezing, shortness of breath, chest tightness, and coughing. It is usually caused by a combination of complex and incompletely understood environmental and genetic interactions. We obtained gene expression data with high-throughput screening and identified biomarkers of children's asthma using bioinformatics tools. Next, we explained the pathogenesis of children's asthma from the perspective of gene regulatory networks: DAVID was applied to perform Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enriching analysis for the top 3000 pairs of relationships in differentially regulatory network. Finally, we found that HAND1, PTK1, NFKB1, ZIC3, STAT6, E2F1, PELP1, USF2, and CBFB may play important roles in children's asthma initiation. On account of regulatory impact factor (RIF) score, HAND1, PTK7, and ZIC3 were the potential asthma-related factors. Our study provided some foundations of a strategy for biomarker discovery despite a poor understanding of the mechanisms underlying children's asthma. Wen Xu Copyright © 2014 Wen Xu. All rights reserved.