About this Journal Submit a Manuscript Table of Contents
International Journal of Geophysics
Volume 2011 (2011), Article ID 324359, 10 pages
http://dx.doi.org/10.1155/2011/324359
Research Article

Uncertainty in the Future Distribution of Tropospheric Ozone over West Africa due to Variability in Anthropogenic Emissions Estimates between 2025 and 2050

Chemistry and Climate Division, Royal Netherlands Meteorological Institute, 3730 AE De Bilt, The Netherlands

Received 19 April 2011; Revised 26 July 2011; Accepted 18 August 2011

Academic Editor: Gregory S. Jenkins

Copyright © 2011 J. E. Williams and P. F. J. van Velthoven. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Hopkins, M. J. Evans, J. D. Lee et al., “Direct estimates of emissions from the megacity of Lagos,” Atmospheric Chemistry and Physics, vol. 9, no. 21, pp. 8471–8477, 2009. View at Scopus
  2. SWAC/OECD and Economic Community of West African States, Western African Perspectives, OECD publishing, 2009.
  3. S. E. Nicholson and J. P. Grist, “The seasonal evolution of the atmospheric circulation over West Africa and equatorial Africa,” Journal of Climate, vol. 16, no. 7, pp. 1013–1030, 2003. View at Scopus
  4. J. E. Williams, M. P. Scheele, P. F. J. van Velthoven, V. Thouret, M. Saunois, and C. E. Reeves, “The influence of biomass burning and transport on tropospheric composition over the tropical Atlantic Ocean and Equatorial Africa during the West African monsoon in 2006,” Atmospheric Chemistry and Physics, vol. 10, no. 20, pp. 9797–9817, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Redelsperger, C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, “African Monsoon Multidisciplinary Analysis: an international research project and field campaign,” Bulletin of the American Meteorological Society, vol. 87, no. 12, pp. 1739–1746, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. P. M. Ruti, J. E. Williams, F. Hourdin, et al., “The West African climate system: a review of the AMMA model inter-comparison initiatives,” Atmospheric Science Letters, vol. 12, pp. 116–122, 2011.
  7. B. Barret, J. E. Williams, I. Bouarar et al., “Impact of West African Monsoon convective transport and lightning NOx production upon the upper tropospheric composition: a multi-model study,” Atmospheric Chemistry and Physics, vol. 10, no. 12, pp. 5719–5738, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. E. Williams, R. Scheele, P. van Velthoven et al., “Global chemistry simulations in the amma multimodel intercomparison project,” Bulletin of the American Meteorological Society, vol. 91, no. 5, pp. 611–624, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. E. Williams, M. P. Scheele, P. F. J. van Velthoven et al., “The influence of biogenic emissions from Africa on tropical tropospheric ozone during 2006: a global modeling study,” Atmospheric Chemistry and Physics, vol. 9, no. 15, pp. 5729–5749, 2009. View at Scopus
  10. C. Liousse, B. Guillaume, J. M. Grégoire, et al., “Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols,” Atmospheric Chemistry and Physics, vol. 10, pp. 9631–9646, 2010.
  11. N. Nakicenovic, O. Davidson, G. Davis, et al., Special Report on Emission Scenarios, Cambridge University Press, Cambridge, UK, 2000.
  12. R. Garnaut, S. Howes, F. Jotzo, and P. Sheehan, “Emissions in the platinum age: the implications of rapid development for climate-change mitigation,” Oxford Review of Economic Policy, vol. 24, no. 2, pp. 377–401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Gauss, G. Myhre, I. S. A. Isaksen et al., “Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere,” Atmospheric Chemistry and Physics, vol. 6, no. 3, pp. 575–599, 2006. View at Scopus
  14. S. Houweling, F. Dentener, and J. Lelieveld, “The impact of non-methane hydrocarbon compounds on tropospheric photochemistry,” Journal of Geophysical Research, vol. 103, no. 3339, pp. 10673–10696, 1998. View at Scopus
  15. J. Landgraf and P. J. Crutzen, “An efficient method for online calculations of photolysis and heating rates,” Journal of the Atmospheric Sciences, vol. 55, no. 5, pp. 863–878, 1998. View at Scopus
  16. G. Myhre, K. P. Shine, G. Rädel et al., “Radiative forcing due to changes in ozone and methane caused by the transport sector,” Atmospheric Environment, vol. 45, no. 2, pp. 387–394, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Hoor, J. Borken-Kleefeld, D. Caro, et al., “The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY,” Atmospheric Chemistry and Physics, vol. 9, no. 9, pp. 3113–3136, 2009.
  18. J. G. J. Olivier, J. A. van Aardenne, F. Dentener, L. Ganzeveld, and J. A. H. W. Peters, “Recent trends in global greenhouse emissions: regional trends and spatial distribution of key sources,” in Non-CO2 Grehouse Gases (NCGG-4), pp. 325–330, Millpress, Rotterdam, The Netherlands, 2005.
  19. E. Uherek, T. Halenka, J. Borken-Kleefeld et al., “Transport impacts on atmosphere and climate: land transport,” Atmospheric Environment, vol. 44, no. 37, pp. 4772–4816, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. O. Endresen, E. Sorgard, H. L. Behrens, P. O. Brett, and I. S. A. Isaksen, “A histrotical reconstruction of ships fuel consumption and emissions,” Journal of Geophysical Research, vol. 112, p. 17, 2007.
  21. B. Owen, D. S. Lee, and L. Lim, “Flying into the future: aviation emissions scenarios to 2050,” Environmental Science and Technology, vol. 44, no. 7, pp. 2255–2260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. R. van der Werf, J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F. Arellano, “Interannual variability in global biomass burning emissions from 1997 to 2004,” Atmospheric Chemistry and Physics, vol. 6, no. 11, pp. 3423–3441, 2006. View at Scopus
  23. P. Jöckei, H. Tost, A. Pozzer et al., “The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere,” Atmospheric Chemistry and Physics, vol. 6, no. 12, pp. 5067–5104, 2006. View at Scopus
  24. F. Dentener, S. Kinne, T. Bond et al., “Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed datasets for Aerocom,” Atmospheric Chemistry and Physics, vol. 6, no. 12, pp. 4321–4344, 2006. View at Scopus
  25. U. Schumann and H. Huntrieser, “The global lightning-induced nitrogen oxides source,” Atmospheric Chemistry and Physics, vol. 7, no. 14, pp. 3823–3907, 2007. View at Scopus
  26. I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophysical Research Letters, vol. 33, Article ID L22808, 2006.
  27. J. T. Houghton, Y. Ding, D. Griggs, et al., Eds., IPCC: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2001.
  28. J. Fuglestvedt, T. Berntsen, G. Myhre, K. Rypdal, and R. B. Skeie, “Climate forcing from the transport sectors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 454–458, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. C. E. Reeves, P. Formenti, C. Afif et al., “Chemical and aerosol characterisation of the troposphere over West Africa during the monsoon period as part of AMMA,” Atmospheric Chemistry and Physics, vol. 10, no. 16, pp. 7575–7601, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Barret, P. Ricaud, C. Mari et al., “Transport pathways of CO in the African upper troposphere during the monsoon season: a study based upon the assimilation of spaceborne observations,” Atmospheric Chemistry and Physics, vol. 8, no. 12, pp. 3231–3246, 2008. View at Scopus
  31. K. S. Law, F. Fierli, F. Cairo et al., “Air Mass origins influencing TTL chemical composition over West Africa during 2006 summer monsoon,” Atmospheric Chemistry and Physics, vol. 10, no. 22, pp. 10753–10770, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. D. J. Parker, R. R. Burton, A. Diongue-Niang, et al., “The diurnal cycle of the West African monsoon circulation,” Quarterly Journal of the Royal Meteorological Society, vol. 131, pp. 2839–2860, 2005.
  33. F. L. Booker, R. Muntifering, M. Mcgrath et al., “The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species,” Journal of Integrative Plant Biology, vol. 51, no. 4, pp. 337–351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. Fiore, J. J. West, L. W. Horowitz, V. Naik, and M. D. Schwartzkopf, “Characterising the tropospheric ozone response to methane emission controls and the benefits to climate and air quality,” Journal of Geophysical Research, vol. 113, Article ID D08307, 16 pages, 2008. View at Publisher · View at Google Scholar
  35. O. Wild and M. J. Prather, “Global tropospheric ozone modeling: quantifying errors due to grid resolution,” Journal of Geophysical Research, vol. 111, no. 11, Article ID D11305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Cariolle, D. Caro, R. Paoli, et al., “Parameterization of plume chemistry into large-scale atmospheric models: application to aircraft NOx emissions,” Journal of Geophysical Research, vol. 114, Article ID D19302, 21 pages, 2009. View at Publisher · View at Google Scholar