About this Journal Submit a Manuscript Table of Contents
International Journal of Geophysics
Volume 2012 (2012), Article ID 603949, 14 pages
http://dx.doi.org/10.1155/2012/603949
Research Article

Comparative Study of the West African Continental, Coastal, and Marine Atmospheric Profiles during the Summer of 2006

1Laboratoire de Physique de l'Atmosphère et de l'Océan Siméon Fongang, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop Dakar-Sénégal, BP: 5085, Dakar, Senegal
2Direction Nationale de la Météorologie de Guinée-Conakry, BP: 566 Rep., Guinea
3IRD/LTHE, BP 53, 38041 Grenoble Cedex 9, France

Received 9 July 2011; Revised 16 December 2011; Accepted 24 January 2012

Academic Editor: Gregory S. Jenkins

Copyright © 2012 Ibrahima Kalil Kante et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Prandtl and F. Lustig, “Ueber complexe verbindungen des fünfwerthigen vanadins mit vierwerthigen elementen,” Berichte der Deutschen Chemischen Gesellschaft, vol. 38, pp. 1305–1310, 1905.
  2. J. Turner, Buoyancy Effects and Fluids, Cambridge University, 1973.
  3. A. S. Monin, “The atmospheric boundary layer,” Annual Review of Fluid Mechanics, vol. 2, pp. 225–250, 1970. View at Scopus
  4. O. Zeman, “Progress in the modeling of planetary boundary layers,” Annual Review of Fluid Mechanics, vol. 13, pp. 253–272, 1981. View at Scopus
  5. B. Cushman-Roisin and J. M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, Accademic Press, 2009.
  6. C. Renaudie, Etude et validation des couches limites atmosphériques et océaniques locales, Ph.D. thesis, université de Toulouse III-Paul Sabatier, 2009.
  7. A. K. Betts, J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A. Viterbo, “The land surface-atmosphere interaction: a review based on observational and global modeling perspectives,” Journal of Geophysical Research D, vol. 101, no. 3, pp. 7209–7225, 1996. View at Scopus
  8. R. H. Johnson, “Large-scale effects of deep convection on the GATE tropical boundary layer,” Journal of the Atmospheric Sciences, vol. 38, no. 11, pp. 2399–2413, 1981. View at Scopus
  9. M. Lothon, F. Couvreux, S. Donier et al., “Impact of coherent eddies on airborne measurements of vertical turbulent fluxes,” Boundary-Layer Meteorology, vol. 124, no. 3, pp. 425–447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Saïd, G. Canut, P. Durand, F. Lohou, and M. Lothon, “Seasonal evolution of boundary-layer turbulence measured by aircraft during the AMMA 2006 special observation period,” Quarterly Journal of the Royal Meteorological Society, vol. 136, no. 1, pp. 47–65, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Canut, M. Lothon, F. Saïd, and F. Lohou, “Observation of entrainment at the interface between monsoon flow and the Saharan air layer,” Quarterly Journal of the Royal Meteorological Society, vol. 136, no. 1, pp. 34–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Redelsperger, C. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, “African monsoon multidisciplinary analysis: an international research project and field campaign,” Bulletin of the American Meteorological Society, vol. 87, no. 12, pp. 1739–1746, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Drobinski, “Dynamique de la couche limite atmosphérique: de la turbulence aux systems de méso-échelle,” Synthèse d’activité scientifique proposée pour une thèse d’habilitation à diriger des recherches de l’Université Paris VI, p. 150, 2009.
  14. J. M. Prospero and T. N. Carlson, “Vertical and areal distribution of. Saharan dust over the westem equatorial north atlantic ocean,” Journal of Geophysical Research, vol. 77, no. 27, pp. 5255–5265, 1972. View at Publisher · View at Google Scholar
  15. J. W. Deardoff, “Prediction of convective mixed-layer entrainment for realistic capping inversion structure,” Journal of Atmospheric Sciences, pp. 558–567, 1978.
  16. P. Seibert, F. Beyrich, S. E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, “Review and intercomparison of operational methods for the determination of the mixing height,” Atmospheric Environment, vol. 34, no. 7, pp. 1001–1027, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. S. K. Nair, T. J. Anurose, D. Bala Subrahamanyam, et al., “Characterization of the vertical structure of coastal atmospheric boundary layer over thumba (8.5°N, 76.9°E) during different seasons,” Advances in Meteorology, vol. 2011, Article ID ID 390826, 9 pages, 2011. View at Publisher · View at Google Scholar
  18. G. Rampanelli and D. Zardi, “A method to determine the capping inversion of the convective boundary layer,” Journal of Applied Meteorology, vol. 43, no. 6, pp. 925–933, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Tennekes, “A model for the dynamics of the inversion above a convective boundary,” Journal of Atmospheric Science, vol. 30, no. 4, pp. 558–567, 1973. View at Publisher · View at Google Scholar
  20. A. G. M. Driedonks, “Models and observations of the growth of the atmospheric boundary layer,” Boundary-Layer Meteorology, vol. 23, no. 3, pp. 283–306, 1982. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Zeng, M. A. Brunke, M. Zhou, C. Fairall, N. A. Bond, and D. H. Lenschow, “Marine atmospheric boundary layer height over the Eastern pacific: data analysis and model evaluation,” Journal of Climate, vol. 17, no. 21, pp. 4159–4170, 2004. View at Scopus