About this Journal Submit a Manuscript Table of Contents
International Journal of Geophysics
Volume 2012 (2012), Article ID 625831, 17 pages
http://dx.doi.org/10.1155/2012/625831
Research Article

Regional Climate Model Sensitivity to Domain Size for the Simulation of the West African Summer Monsoon Rainfall

1Department of Physics, University of Cape Coast, Cape Coast, Ghana
2Earth System Physics (ESP) Section, International Centre for Theoretical Physics (ICTP), 34151 Trieste, Italy

Received 2 May 2011; Revised 29 August 2011; Accepted 5 November 2011

Academic Editor: Alessandra Giannini

Copyright © 2012 Nana A. K. Browne and Mouhamadou B. Sylla. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. D. Thorncroft, H. Nguyen, and C. Zhang, “Annual cycle of the West African monsoon: regional circulations and associated water vapour transport,” Quarterly Journal of the Royal Meteorological Society, vol. 137, no. 654, pp. 129–147, 2011. View at Publisher · View at Google Scholar
  2. K. H. Cook, “Generation of the African easterly jet and its role in determining West African precipitation,” Journal of Climate, vol. 12, no. 5 I, pp. 1165–1184, 1999. View at Google Scholar
  3. C. D. Thorncroft and M. Blackburn, “Maintenance of the African easterly jet,” Quarterly Journal of the Royal Meteorological Society, vol. 125, no. 555, pp. 763–786, 1999. View at Google Scholar
  4. M. B. Sylla, F. Giorgi, P. M. Ruti, S. Calmanti, and A. Dell'Aquila, “The impact of deep convection on the West African summer monsoon climate: a regional climate model sensitivity study,” Quarterly Journal of the Royal Meteorological Society, vol. 137, no. 659, pp. 1417–1430, 2011. View at Publisher · View at Google Scholar
  5. J. S. Hsieh and K. H. Cook, “A study of the energetics of African easterly waves using regional climate model,” Journal of the Atmospheric Sciences, vol. 64, no. 2, pp. 421–440, 2007. View at Publisher · View at Google Scholar
  6. V. Sathiyamoorthy, P. K. Pal, and P. C. Joshi, “Intraseasonal variability of the Tropical Easterly Jet,” Meteorology and Atmospheric Physics, vol. 96, no. 3-4, pp. 305–316, 2007. View at Publisher · View at Google Scholar
  7. B. J. Abiodun, J. S. Pal, E. A. Afiesimama, W. J. Gutowski, and A. Adedoyin, “Simulation of West African monsoon using RegCM3 Part II: impacts of deforestation and desertification,” Theoretical and Applied Climatology, vol. 93, no. 3-4, pp. 245–261, 2008. View at Publisher · View at Google Scholar
  8. K. I. Mohr and C. D. Thorncroft, “Intense convective systems in West Africa and their relationship to the African easterly jet,” Quarterly Journal of the Royal Meteorological Society, vol. 132, no. 614, pp. 163–176, 2006. View at Publisher · View at Google Scholar
  9. G. S. Jenkins, A. T. Gaye, and B. Sylla, “Late 20th century attribution of drying trends in the Sahel from the Regional Climate Model (RegCM3),” Geophysical Research Letters, vol. 32, no. 22, Article ID L22705, pp. 1–4, 2005. View at Publisher · View at Google Scholar
  10. A. Gaye, A. Viltard, and P. de Félice, “Squall lines and rainfall over Western Africa during summer 1986 and 87,” Meteorology and Atmospheric Physics, vol. 90, no. 3-4, pp. 215–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. E. K. Vizy and K. H. Cook, “Development and application of a mesoscale climate model for the tropics: influence of sea surface temperature anomalies on the West African monsoon,” Journal of Geophysical Research D, vol. 107, no. 3, Article ID 4023, 2002. View at Google Scholar
  12. M. B. Sylla, A. T. Gaye, G. S. Jenkins, J. S. Pal, and F. Giorgi, “Consistency of projected drought over the Sahel with changes in the monsoon circulation and extremes in a regional climate model projections,” Journal of Geophysical Research D, vol. 115, no. 16, Article ID D16108, 2010. View at Publisher · View at Google Scholar
  13. W. Moufouma-Okia and D. P. Rowell, “Impact of soil moisture initialisation and lateral boundary conditions on regional climate model simulations of the West African Monsoon,” Climate Dynamics, vol. 35, no. 1, pp. 213–229, 2010. View at Publisher · View at Google Scholar
  14. E. A. Afiesimama, J. S. Pal, B. J. Abiodun, W. J. Gutowski, and A. Adedoyin, “Simulation of West African monsoon using the RegCM3. Part I: model validation and interannual variability,” Theoretical and Applied Climatology, vol. 86, no. 1–4, pp. 23–37, 2006. View at Publisher · View at Google Scholar
  15. M. B. Sylla, A. T. Gaye, J. S. Pal, G. S. Jenkins, and X. Q. Bi, “High-resolution simulations of West African climate using regional climate model (RegCM3) with different lateral boundary conditions,” Theoretical and Applied Climatology, vol. 98, no. 3-4, pp. 293–314, 2009. View at Publisher · View at Google Scholar
  16. M. B. Sylla, A. Dell'Aquila, P. M. Ruti, and F. Giorgi, “Simulation of the intraseasonal and the interannual variability of rainfall over West Africa with RegCM3 during the monsoon period,” International Journal of Climatology, vol. 30, no. 12, pp. 1865–1883, 2010. View at Publisher · View at Google Scholar
  17. R. A. Anthes, Ying-Hwa Kuo, Eirh-Yu Hsie, S. Low-Nam, and T. W. Bettge, “Estimation of skill and uncertainty in regional numerical models,” Quarterly Journal of the Royal Meteorological Society, vol. 115, no. 488, pp. 763–806, 1989. View at Google Scholar
  18. F. Giorgi and L. O. Mearns, “Introduction to special section: regional climate modeling revisited,” Journal of Geophysical Research, vol. 104, pp. 6335–6352, 1999. View at Google Scholar
  19. S. A. Rauscher, A. Seth, J. H. Qian, and S. J. Camargo, “Domain choice in an experimental nested modeling prediction system for South America,” Theoretical and Applied Climatology, vol. 86, no. 1–4, pp. 229–246, 2006. View at Publisher · View at Google Scholar
  20. A. Seth and F. Giorgi, “The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model,” Journal of Climate, vol. 11, no. 10, pp. 2698–2712, 1998. View at Google Scholar
  21. R. G. Jones, J. M. Murphy, and M. Noguer, “Simulation of climate change over Europe using a nested regional-climate model. I: assessment of control climate, including sensitivity to location of lateral boundaries,” Quarterly Journal of the Royal Meteorological Society, vol. 121, no. 526 B, pp. 1413–1449, 1995. View at Google Scholar
  22. F. Giorgi, M. R. Marinucci, and G. T. Bates, “Development of a second-generation regional climate model (RegCM2). Part I: boundary-layer and radiative transfer processes,” Monthly Weather Review, vol. 121, no. 10, pp. 2794–2813, 1993. View at Google Scholar
  23. F. Giorgi, M. R. Marinucci, G. T. Bates, and G. De Canio, “Development of a second-generation regional climate model (RegCM2). Part II: convective processes and assimilation of lateral boundary conditions,” Monthly Weather Review, vol. 121, no. 10, pp. 2814–2832, 1993. View at Google Scholar
  24. J. S. Pal, F. Giorgi, X. Bi, et al., “The ICTP RegCM3 and RegCNET: regional climate modeling for the developing world,” Bulletin of American Meteorological Society, vol. 88, pp. 1395–1409, 2007. View at Google Scholar
  25. G. A. Grell, J. Dudhia, and D. R. Stauffer, “Description of the fifth generation Penn State/NCAR mesoscale model (MM5),” Technical Note NCAR/TN-398+STR, 1994. View at Google Scholar
  26. J. T. Kiehl, J. J. Hack, G. B. Bonan, et al., “Description of the NCAR Community Climate Model (CCM3),” Tech. Rep. TN-420+STR, NCAR, Boulder, Colo, USA, 1996. View at Google Scholar
  27. A. A. M. Holtslag, E. I. F. De Bruijn, and H. L. Pan, “A high resolution air mass transformation model for short-range weather forecasting,” Monthly Weather Review, vol. 118, no. 8, pp. 1561–1575, 1990. View at Google Scholar
  28. R. E. Dickinson, A. Henderson-Sellers, and P. J. Kennedy, “Biosphere–atmosphere transfer scheme (BATS) version 1E as coupled to the NCAR Community Climate Model,” Technical Note NCAR/TN-387+STR, 1993. View at Google Scholar
  29. X. Zeng, M. Zhao, and R. E. Dickinson, “Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data,” Journal of Climate, vol. 11, no. 10, pp. 2628–2644, 1998. View at Google Scholar
  30. J. M. Fritsch and C. F. Chappell, “Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization,” Journal of the Atmospheric Sciences, vol. 37, no. 8, pp. 1722–1733, 1980. View at Google Scholar
  31. J. S. Pal, E. E. Small, and E. A. B. Eltahir, “Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM,” Journal of Geophysical Research D, vol. 105, no. 24, pp. 29579–29594, 2000. View at Google Scholar
  32. S. Uppala, D. Dee, S. Kobayashi, P. Berrisford, and A. Simmons, “Towards a climate data assimilation system: status update of ERA-Interim,” ECMWF Newsletter, vol. 115, pp. 12–18, 2008. View at Google Scholar
  33. R. W. Reynolds, N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, “An improved in situ and satellite SST analysis for climate,” Journal of Climate, vol. 15, no. 13, pp. 1609–1625, 2002. View at Google Scholar · View at Scopus
  34. C. Kummerow, Y. Hong, W. S. Olson et al., “The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors,” Journal of Applied Meteorology, vol. 40, no. 11, pp. 1801–1820, 2001. View at Google Scholar
  35. G. J. Huffman, R. F. Adler, D. T. Bolvin et al., “The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales,” Journal of Hydrometeorology, vol. 8, no. 1, pp. 38–55, 2007. View at Publisher · View at Google Scholar
  36. R. F. Adler, G. J. Huffman, A. Chang et al., “The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present),” Journal of Hydrometeorology, vol. 4, no. 6, pp. 1147–1167, 2003. View at Publisher · View at Google Scholar
  37. M. B. Sylla, F. Giorgi, E. Coppola, and L. Mariotti, “Uncertainties in daily rainfall over Africa: assessment of observation products and evaluation of a regional climate model simulation,” submitted to International Journal of Climatology.
  38. F. Giorgi and X. Bi, “A study of internal variability of a regional climate model,” Journal of Geophysical Research D, vol. 105, no. 24, pp. 29503–29521, 2000. View at Google Scholar
  39. M. M. Kgatuke, W. A. Landman, A. Beraki, and M. P. Mbedzi, “The internal variability of the RegCM3 over South Africa,” International Journal of Climatology, vol. 28, no. 4, pp. 505–520, 2008. View at Publisher · View at Google Scholar
  40. E. Vanvyve, N. Hall, C. Messager, S. Leroux, and J. P. van Ypersele, “Internal variability in a regional climate model over West Africa,” Climate Dynamics, vol. 30, no. 2-3, pp. 191–202, 2008. View at Publisher · View at Google Scholar
  41. S. E. Nicholson, B. Some, and B. Kone, “An analysis of recent rainfall conditions in West Africa, including the rainy seasons of the 1997 El Nino and the 1998 La Nina years,” Journal of Climate, vol. 13, no. 14, pp. 2628–2640, 2000. View at Google Scholar
  42. V. Mathon and H. Laurent, “Life cycle of Sahelian mesoscale convective cloud systems,” Quarterly Journal of the Royal Meteorological Society, vol. 127, no. 572, pp. 377–406, 2001. View at Publisher · View at Google Scholar
  43. M. B. Sylla, E. Coppola, L. Mariotti et al., “Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis,” Climate Dynamics, vol. 35, no. 1, pp. 231–247, 2010. View at Publisher · View at Google Scholar
  44. B. Sultan, S. Janicot, and A. Diedhiou, “The West African monsoon dynamics. Part I: documentation of intraseasonal variability,” Journal of Climate, vol. 16, no. 21, pp. 3389–3406, 2003. View at Publisher · View at Google Scholar
  45. M. B. Sylla, F. Giorgi, and F. Stordal, “The large-scale origins of rainfall and temperature bias in high resolution simulations over southern Africa,” Climate Research. In press. View at Publisher · View at Google Scholar
  46. S. E. Nicholson, “The intensity, location and structure of the tropical rainbelt over west Africa as factors in interannual variability,” International Journal of Climatology, vol. 28, no. 13, pp. 1775–1785, 2008. View at Publisher · View at Google Scholar
  47. M. J. Rodwell and B. J. Hoskins, “Subtropical anticyclones and summer monsoons,” Journal of Climate, vol. 14, no. 15, pp. 3192–3211, 2001. View at Google Scholar
  48. C. Chou and J. D. Neelin, “Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa,” Journal of Climate, vol. 16, no. 3, pp. 406–425, 2003. View at Google Scholar
  49. A. Diedhiou, S. Janicot, A. Viltard, and P. De Felice, “Evidence of two regimes of easterly waves over West Africa and the tropical Atlantic,” Geophysical Research Letters, vol. 25, no. 15, pp. 2805–2808, 1998. View at Google Scholar
  50. A. Mekonnen, C. D. Thorncroft, and A. R. Aiyyer, “Analysis of convection and its association with African easterly waves,” Journal of Climate, vol. 19, no. 20, pp. 5405–5421, 2006. View at Publisher · View at Google Scholar