About this Journal Submit a Manuscript Table of Contents
International Journal of Geophysics
Volume 2012 (2012), Article ID 673506, 7 pages
http://dx.doi.org/10.1155/2012/673506
Research Article

Lg Coda Variations in North-Central Iran

1Institute of Geophysics, University of Tehran, Tehran, 14155-6466, Iran
2International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, 19395-3913, Iran

Received 22 July 2011; Revised 5 November 2011; Accepted 7 November 2011

Academic Editor: P. Talwani

Copyright © 2012 Mojtaba Naghavi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Press and M. Ewing, “Two slow surface wave across north America,” Bulletin of the Seismological Society of America, vol. 42, pp. 219–228, 1952.
  2. J. Xie, Z. Wu, R. Liu, D. Schaff, Y. Liu, and J. Liang, “Tomographic regionalization of crustal Lg Q in eastern Eurasin,” Geophysical Research Letters, vol. 33, Article ID L03315, 2006.
  3. B. J. Mitchell, Y. Pan, J. Xie, and L. Cong, “Lg coda Q variation across Eurasia and its relation to crustal evolution,” Journal of Geophysical Research B, vol. 102, no. 10, pp. 22767–22779, 1997. View at Scopus
  4. J. Xie and O. W. Nuttli, “Interpretation of high-frequency coda at large distances: stochastic modelling and method of inversion,” Geophysical Journal, vol. 95, no. 3, pp. 579–595, 1988. View at Scopus
  5. S. Baqer and B. J. Mitchell, “Regional variation of Lg coda Q in the continental United States and its relation to crustal structure and evolution,” Pure and Applied Geophysics, vol. 153, no. 2–4, pp. 613–638, 1998. View at Scopus
  6. L. Cong and B. J. Mitchell, “Lg coda Q and its relation to the geology and tectonics of the Middle East,” Pure and Applied Geophysics, vol. 153, no. 2–4, pp. 563–585, 1998. View at Scopus
  7. J. L. De Souza and B. J. Mitchell, “Lg coda Q variations across South America and their relation to crustal evolution,” Pure and Applied Geophysics, vol. 153, no. 2–4, pp. 587–612, 1998. View at Scopus
  8. M. Campillo, “Propagation and attenuation characteristics of the crustal phase Lg,” Pure and Applied Geophysics, vol. 132, no. 1-2, pp. 1–19, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Alavi, “Tectonostratigraphic synthesis and structural style of the Alborz mountain system in Northern Iran,” Journal of Geodynamics, vol. 21, no. 1, pp. 1–33, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M.C. Şengör, D. Altiner, A. Cin, T. Ustaömer, and K. J. Hsü, “Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land,” Geological Society Special Publication, vol. 37, no. 1, pp. 119–181, 1988. View at Publisher · View at Google Scholar
  11. M. Berberian and R. S. Yeats, “Contribution of archaeological data to studies of earthquake history in the Iranian Plateau,” Journal of Structural Geology, vol. 23, no. 2-3, pp. 563–584, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Jackson, K. Priestley, M. Allen, and M. Berberian, “Active tectonics of the South Caspian basin,” Geophysical Journal International, vol. 148, no. 2, pp. 214–245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. J. F. Ritz, H. Nazari, A. Ghassemi et al., “Active transtension inside central Alborz: a new insight into northern Iran-southern Caspian geodynamics,” Geology, vol. 34, no. 6, pp. 477–480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. B. L. N. Kennett and E. R. Engdahl, “Traveltimes for global earthquake location and phase identification,” Geophysical Journal International, vol. 105, no. 2, pp. 429–465, 1991. View at Scopus
  15. R. L. Street, R. B. Herrmann, and O. W. Nuttli, “Spectral characteristics of the Lg wave generated by central United States earthquakes,” Geophysical Journal of Royal Astronomical Society, vol. 41, pp. 51–63, 1975.
  16. R. B. Herrmann and A. Kijko, “Modeling some empirical vertical component Lg relations,” Bulletin of the Seismological Society of America, vol. 73, pp. 157–171, 1983.
  17. R. W. Burger, P. G. Somerville, L. S. Barker, R. B. Herrrnann, and D. V. Helmberger, “The effect of crustal structure on strong ground motion attenuation relations in eastern North America,” Bulletin of the Seismological Society of America, vol. 77, pp. 120–139, 1987.
  18. G. M. Atkinson and R. F. Mereu, “The shape of ground motion attenuation curves in southeastern Canada,” Bulletin of the Seismological Society of America, vol. 82, no. 5, pp. 2014–2031, 1992. View at Scopus
  19. J. Xie and B. J. Mitchell, “A back-projection ethodforimaginglarge-scale lateral variations of Lg coda Q with application to ontinental Africa,” Geophysical Journal International, vol. 100, pp. 161–181, 1990.
  20. G. J. Steensma and N. N. Biswas, “Frequency dependent characteristics of coda wave quality factor in central and southcentral Alaska,” Pure and Applied Geophysics, vol. 128, no. 1-2, pp. 295–307, 1988. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Hansen, D. McNamara, E. Van Ark, and D. Christensen, “Lg ProPagation Continental Alaska,” Eos Transactions of American Geophysical Union, vol. 79, article 79, 1998.
  22. H. M. Benz, A. Frankel, and D. M. Boore, “Regional Lg attenuation for the continental United States,” Bulletin of the Seismological Society of America, vol. 87, no. 3, pp. 606–619, 1997. View at Scopus
  23. D. E. McNamara, T. J. Owens, and W. R. Walter, “Propagation characteristics of Lg across the Tibetan Plateau,” Bulletin of the Seismological Society of America, vol. 86, no. 2, pp. 457–469, 1996. View at Scopus
  24. D. E. McNamara, “Frequency dependent Lg attenuation in south-central Alaska,” Geophysical Research Letters, vol. 27, no. 23, pp. 3949–3952, 2000. View at Publisher · View at Google Scholar · View at Scopus