About this Journal Submit a Manuscript Table of Contents
International Journal of Geophysics
Volume 2012 (2012), Article ID 863792, 12 pages
http://dx.doi.org/10.1155/2012/863792
Research Article

Investigation of High-Frequency Internal Wave Interactions with an Enveloped Inertia Wave

1Department of Mechanical Engineering, Ohio State University, Columbus, OH 43210, USA
2Department of Mechanical Engineering, Brigham Young University, 435 CTB, Provo, UT 84602, USA

Received 9 April 2012; Accepted 17 October 2012

Academic Editor: Sergej Zilitinkevich

Copyright © 2012 B. Casaday and J. Crockett. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. R. Chan, L. Pfister, T. P. Buil et al., “A case study of the mountain lee wave event of January 6, 1992,” Geophysical Research Letters, vol. 20, pp. 2551–2554, 1993.
  2. A. Dörnbrack, M. Leutbecher, R. Kivi, and E. Kyrö, “Mountain-wave-induced record low stratospheric temperatures above northern Scandinavia,” Tellus, Series A, vol. 51, no. 5, pp. 951–963, 1999. View at Scopus
  3. M. Leutbecher and H. Volkert, “The propagation of mountain waves into the stratosphere: quantitative evaluation of three-dimensional simulations,” Journal of the Atmospheric Sciences, vol. 57, no. 18, pp. 3090–3108, 2000. View at Scopus
  4. R. R. Long, “Some aspects of the flow of stratified uids, III, Continuous density gradients,” Tellus, vol. 7, pp. 341–357, 1955.
  5. G. D. Nastrom and D. C. Fritts, “Sources of mesoscale variability of gravity waves. Part I: topographic excitation,” Journal of the Atmospheric Sciences, vol. 49, no. 2, pp. 101–110, 1992. View at Scopus
  6. M. J. Alexander, J. H. Beres, and L. Pfister, “Tropical stratospheric gravity wave activity and relationships to clouds,” Journal of Geophysical Research D, vol. 105, no. 17, pp. 22299–22309, 2000. View at Scopus
  7. M. J. Alexander and L. Pfister, “Gravity wave momentum flux in the lower stratosphere over convection,” Geophysical Research Letters, vol. 22, no. 15, pp. 2029–2032, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. E. M. Dewan, R. H. Picard, R. R. O'Neil et al., “MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere,” Geophysical Research Letters, vol. 25, no. 7, pp. 939–942, 1998. View at Scopus
  9. K. Sato, H. Hashiguchi, and S. Fukao, “Gravity waves and turbulence associated with cumulus convection observed with the UHF/VHF clear-air Doppler radars,” Journal of Geophysical Research, vol. 100, no. 4, pp. 7111–7119, 1995. View at Scopus
  10. K. Sato, D. J. O'Sullivan, and T. J. Dunkerton, “Low-frequency inertia-gravity waves in the stratosphere revealed by three-week continuous observation with the MU radar,” Geophysical Research Letters, vol. 24, no. 14, pp. 1739–1742, 1997. View at Scopus
  11. R. A. Vincent and M. J. Alexander, “Gravity waves in the tropical lower stratosphere: an observational study of seasonal and interannual variability,” Journal of Geophysical Research D, vol. 105, no. 14, pp. 17971–17982, 2000. View at Scopus
  12. D. C. Fritts and Z. Luo, “Gravity wave excitation by geostrophic adjustment of the jet stream. Part I: two-dimensional forcing,” Journal of the Atmospheric Sciences, vol. 49, no. 8, pp. 681–697, 1992. View at Scopus
  13. F. M. Guest, M. J. Reeder, C. J. Marks, and D. J. Karoly, “Inertia-gravity waves observed in the lower stratosphere over Macquarie Island,” Journal of the Atmospheric Sciences, vol. 57, no. 5, pp. 737–752, 2000. View at Scopus
  14. D. O'Sullivan and T. J. Dunkerton, “Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability,” Journal of the Atmospheric Sciences, vol. 52, no. 21, pp. 3695–3716, 1995. View at Scopus
  15. S. L. Vadas and D. C. Fritts, “Gravity wave radiation and mean responses to local body forces in the atmosphere,” Journal of the Atmospheric Sciences, vol. 58, no. 16, pp. 2249–2279, 2001. View at Scopus
  16. P. B. Hayes, J. F. Kafkalidis, W. R. Skinner, and R. G. Roble, “A global view of the molecular oxygen night glow,” Journal of Geophysical Research, vol. 108, p. 4646, 2003.
  17. M. H. Hitchman, J. C. Gille, C. D. Rodgers, and G. Brasseur, “The separated polar winter stratopause: a gravity wave driven climatological feature,” Journal of the Atmospheric Sciences, vol. 46, no. 3, pp. 410–422, 1989. View at Scopus
  18. M. J. Alexander and J. R. Holton, “A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves,” Journal of the Atmospheric Sciences, vol. 54, no. 3, pp. 408–419, 1997. View at Scopus
  19. J. T. Bacmeister, “Mountain-wave drag in the stratosphere and mesosphere inferred from observed winds and a simple mountain-wave parameterization scheme,” Journal of the Atmospheric Sciences, vol. 50, no. 3, pp. 377–399, 1993. View at Scopus
  20. D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Reviews of Geophysics, vol. 41, no. 1, pp. 1–64, 2003. View at Scopus
  21. C. J. Marks and S. D. Eckermann, “A three-dimensional nonhydrostatic ray-tracing model for gravity waves: formulation and preliminary results for the middle atmosphere,” Journal of the Atmospheric Sciences, vol. 52, no. 11, pp. 1959–1984, 1995. View at Scopus
  22. M. Takahashi, N. Zhao, and T. Kumakura, “Equatorial waves in a general circulation model simulating a Quasi-Biennial-Oscillation,” Journal of the Meteorological Society of Japan, vol. 75, no. 2, pp. 529–539, 1997. View at Scopus
  23. K. Hamilton and J. D. Mahlman, “General circulation model simulation of the semiannual oscillation of the tropical middle atmosphere,” Journal of the Atmospheric Sciences, vol. 45, no. 21, pp. 3212–3235, 1988. View at Scopus
  24. L. J. Sonmor and G. P. Klaassen, “Mechanisms of gravity wave focusing in the middle atmosphere,” Journal of the Atmospheric Sciences, vol. 57, no. 4, pp. 493–510, 2000. View at Scopus
  25. S. A. Thorpe, “Observations of parametric instability and breaking waves in an oscillating tilted tube,” Journal of Fluid Mechanics, vol. 261, pp. 33–45, 1994. View at Scopus
  26. D. Broutman and W. R. Young, “On the interaction of small-scale oceanic internal waves with near-inertial waves,” Journal of Fluid Mechanics, vol. 166, pp. 341–358, 1986. View at Scopus
  27. D. L. Bruhwiler and T. J. Kaper, “Wavenumber transport: scattering of small-scale internal waves by large-scale wavepackets,” Journal of Fluid Mechanics, vol. 289, pp. 379–405, 1995. View at Scopus
  28. S. D. Eckermann, “Influence of wave propagation on the doppler spreading of atmospheric gravity waves,” Journal of the Atmospheric Sciences, vol. 54, no. 21, pp. 2554–2573, 1997. View at Scopus
  29. J. C. Vanderhoff, J. W. Rottman, and D. Broutman, “The trapping and detrapping of short internal waves by an inertia wave,” Physics of Fluids, vol. 22, no. 12, Article ID 126603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Vanderhoff, K. Nomura, J. Rottman, and C. Macaskill, “Doppler spreading of internal gravity waves by an inertia-wave packet,” Journal of Geophysical Research, vol. 113, Article ID C05018, 2008. View at Publisher · View at Google Scholar
  31. R. L. Walterscheid, “Propagation of small-scale gravity waves through large-scale internal wave fields: Eikonal effects at low-frequency approximation critical levels,” Journal of Geophysical Research D, vol. 105, no. 14, pp. 18027–18037, 2000. View at Scopus
  32. R. Godoy-Diana, J. M. Chomaz, and C. Donnadieu, “Internal gravity waves in a dipolar wind: a wave-vortex interaction experiment in a stratified fluid,” Journal of Fluid Mechanics, vol. 548, pp. 281–308, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. D. C. Fritts and T. J. Dunkerton, “A quasi-linear study of gravity wave saturation and self-acceleration,” Journal of the Atmospheric Sciences, vol. 41, no. 22, pp. 3272–3289, 1984. View at Scopus
  34. B. R. Sutherland, “Internal wave instability: wave-wave versus wave-induced mean flow interactions,” Physics of Fluids, vol. 18, no. 7, Article ID 074107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. A. S. Broad, “Linear theory of momentum fluxes in 3-D flows with turning of the mean wind with height,” Quarterly Journal of the Royal Meteorological Society, vol. 121, no. 528, pp. 1891–1902, 1995. View at Scopus
  36. A. S. Broad, “Do orographic gravity waves break in flows with uniform wind direction turning with height?” Quarterly Journal of the Royal Meteorological Society, vol. 125, no. 557, pp. 1695–1714, 1999. View at Scopus
  37. K. B. Winters and E. A. D'Asaro, “Two-dimensional instability of finite amplitude internal gravity waves packets near a critical layer,” Journal of Geophysical Research, vol. 94, no. C 9, p. 12709, 1989. View at Publisher · View at Google Scholar
  38. F. S. Henyey and N. Pomphrey, “Eikonal description of internal wave interactions: a non-diffusive picture of ‘induced diffusion’,” Dynamics of Atmospheres and Oceans, vol. 7, no. 4, pp. 189–219, 1983. View at Scopus
  39. F. S. Henyey, J. Wright, and S. M. Flatté, “Energy and action ow through the internal wave field: an eikonal approach,” Journal of Geophysical Research, vol. 91, pp. 8487–8495, 1986.
  40. A. Javam and L. G. Redekopp, “The transmission of spatially-compact internal wave packets through a critical level,” Dynamics of Atmospheres and Oceans, vol. 28, no. 3-4, pp. 127–138, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Müller, G. Holloway, F. Henyey, and N. Pomphrey, “Nonlinear interactions among internal gravity waves,” Reviews of Geophysics, vol. 24, pp. 493–596, 1986.
  42. K. B. Winters and E. A. D'Asaro, “Three-dimensional wave instability near a critical level,” Journal of Fluid Mechanics, vol. 272, pp. 255–284, 1994. View at Scopus
  43. C. O. Hines, “The saturation of gravity waves in the middle atmosphere. Part II: development of Doppler-spread theory,” Journal of the Atmospheric Sciences, vol. 48, no. 11, pp. 1360–1379, 1991. View at Scopus
  44. C. O. Hines, “The saturation of gravity waves in the middle atmosphere. Part IV: cutoff of the incident wave spectrum,” Journal of the Atmospheric Sciences, vol. 50, no. 18, pp. 3045–3060, 1993. View at Scopus
  45. C. O. Hines, “Nonlinearity of gravity wave saturated spectra in the middle atmosphere,” Geophysical Research Letters, vol. 23, no. 23, pp. 3309–3312, 1996. View at Scopus
  46. C. O. Hines, “Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: basic formulation,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 59, no. 4, pp. 371–386, 1997. View at Scopus
  47. K. N. Sartelet, “Wave propagation inside an inertia wave. Part I: role of time dependence and scale separation,” Journal of the Atmospheric Sciences, vol. 60, pp. 1433–1447, 2003.
  48. K. N. Sartelet, “Wave propagation inside an inertia wave. Part II: wave breaking,” Journal of the Atmospheric Sciences, vol. 60, pp. 1448–1455, 2003.
  49. D. Broutman, “On internal wave caustics,” Journal of Physical Oceanography, vol. 16, pp. 1625–1635, 1986.
  50. K. Sato, D. J. O'Sullivan, and T. J. Dunkerton, “Low-frequency inertia-gravity waves in the stratosphere revealed by three-week continuous observation with the MU radar,” Geophysical Research Letters, vol. 24, no. 14, pp. 1739–1742, 1997. View at Scopus
  51. R. O. R. Y. Thompson, “Observation of inertial waves in the stratosphere,” Quarterly Journal of the Royal Meteorological Society, vol. 104, pp. 691–698, 1978.
  52. A. Gill, Atmosphere-Ocean Dynamics, Academic Press, 1982.
  53. W. D. Hayes, “Kinematic wave theory,” Proceedings of the Royal Society of London, vol. 320, no. 1541, pp. 209–226, 1970. View at Scopus
  54. W. L. Jones, “Propagation of internal gravity wave in uids with shear and rotation,” The Journal of Fluid Mechanics, vol. 30, pp. 439–448, 1967.