About this Journal Submit a Manuscript Table of Contents
International Journal of Geophysics
Volume 2013 (2013), Article ID 612375, 13 pages
http://dx.doi.org/10.1155/2013/612375
Research Article

Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols

1Laboratory of Environmental Modeling and Atmospheric Physics, Department of Physics, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
2Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon

Received 24 March 2013; Accepted 5 June 2013

Academic Editor: Robert Tenzer

Copyright © 2013 A. J. Komkoua Mbienda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The modified Mackay (mM), the Grain-Watson (GW), Myrdal and Yalkovsky (MY), Lee and Kesler (LK), and Ambrose-Walton (AW) methods for estimating vapor pressures ( ) are tested against experimental data for a set of volatile organic compounds (VOC). required to determine gas-particle partitioning of such organic compounds is used as a parameter for simulating the dynamic of atmospheric aerosols. Here, we use the structure-property relationships of VOC to estimate . The accuracy of each of the aforementioned methods is also assessed for each class of compounds (hydrocarbons, monofunctionalized, difunctionalized, and tri- and more functionalized volatile organic species). It is found that the best method for each VOC depends on its functionality.