About this Journal Submit a Manuscript Table of Contents
International Journal of Geophysics
Volume 2013 (2013), Article ID 612375, 13 pages
http://dx.doi.org/10.1155/2013/612375
Research Article

Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols

1Laboratory of Environmental Modeling and Atmospheric Physics, Department of Physics, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
2Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon

Received 24 March 2013; Accepted 5 June 2013

Academic Editor: Robert Tenzer

Copyright © 2013 A. J. Komkoua Mbienda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Seinfeld and S. Pandis, Amospheric Chemestry and Physics: From a Pollution to Climate Change, John Wiley & Sons, New York, NY, USA, 1998.
  2. M. Tombette, Modélisation des aérosols et de leurs propriãltés optiques sur l'Europe et l'île de France: validation, sensibilité et assimilation des données [Thèse], Ecole nationale des ponts et chaussées, 2007.
  3. P. Adams and J. Seinfeld, “Predicting global aerosol size distributions in general circulation models,” Journal of Geophysical Research, vol. 107, no. 19, pp. AAC 4-1–AAC 4-23, 2002. View at Publisher · View at Google Scholar
  4. S. Gons, L. A. Barrie, J. P. Blanchet, et al., “Canadian aerosols module: a size-segregated simulation of atmospheric aerosol processes for climate to and air quality models. I Module development,” Journal of Geophysical Research, vol. 108, no. 1, pp. AAC 3-1–AAC 3-16, 2003. View at Publisher · View at Google Scholar
  5. E. R. Whitby and P. H. McMurry, “Modal aerosol dynamics modeling,” Aerosol Science and Technology, vol. 27, no. 6, pp. 673–688, 1997. View at Scopus
  6. E. Debry, Modélisation et simulation de la dynamique des aérosols atmosphériques [Thèse], Ecole nationale des ponts et chaussées, 2004.
  7. B. Dahneke, Theory of Dispersed Multiphase Flow, Academic press, New York, NY, USA, 1983.
  8. E. Debry, K. Fahey, K. Sartelet, B. Sportisse, and M. Tombette, “Technical note: a new SIze REsolved Aerosol Model (SIREAM),” Atmospheric Chemistry and Physics, vol. 7, no. 6, pp. 1537–1547, 2007. View at Scopus
  9. C. Tong, M. Blanco, W. A. Goddard III, and J. H. Seinfeld, “Thermodynamic properties of multifunctional oxygenates in atmospheric aerosols from quantum mechanics and molecular dynamics: dicarboxylic acids,” Environmental Science and Technology, vol. 38, no. 14, pp. 3941–3949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Banerjee, M. K. Singh, and A. Khanna, “Prediction of binary VLE for imidazolium based ionic liquid systems using COSMO-RS,” Industrial and Engineering Chemistry Research, vol. 45, no. 9, pp. 3207–3219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Diedenhofen, A. Klamt, K. Marsh, and A. Schäfer, “Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids,” Physical Chemistry Chemical Physics, vol. 9, no. 33, pp. 4653–4656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. P. B. Myrdal and S. H. Yalkowsky, “Estimating pure component vapor pressures of complex organic molecules,” Industrial and Engineering Chemistry Research, vol. 36, no. 6, pp. 2494–2499, 1997. View at Scopus
  13. R. J. Griffin, K. Nguyen, D. Dabdub, and J. H. Seinfeld, “A coupled hydrophobic-hydrophilic model for predicting secondary organic aerosol formation,” Journal of Atmospheric Chemistry, vol. 44, no. 2, pp. 171–190, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. B. K. Pun, R. J. Griffin, C. Seigneur, and J. H. Seinfeld, “Secondary organic aerosol 2. Thermodynamic model for gas/particle partitioning of molecular constituents,” Journal of Geophysical Research D, vol. 107, no. 17, pp. AAC 4-1–AAC 4-15, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. E. Jenkin, “Modelling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3,” Atmospheric Chemistry and Physics, vol. 4, no. 7, pp. 1741–1757, 2004. View at Scopus
  16. D. Mackay, A. Bobra, D. W. Chan, and W. Y. Shiu, “Vapor pressure correlations for low-volatility environmental chemicals,” Environmental Science and Technology, vol. 16, no. 10, pp. 645–649, 1982. View at Scopus
  17. J. F. Pankow and W. E. Asher, “SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds,” Atmospheric Chemistry and Physics, vol. 8, no. 10, pp. 2773–2796, 2008. View at Scopus
  18. M. Capouet and J.-F. Müller, “A group contribution method for estimating the vapour pressures of α-pinene oxidation products,” Atmospheric Chemistry and Physics, vol. 6, no. 6, pp. 1455–1467, 2006. View at Scopus
  19. M. Camredon and B. Aumont, “Assessment of vapor pressure estimation methods for secondary organic aerosol modeling,” Atmospheric Environment, vol. 40, no. 12, pp. 2105–2116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Compernolle, K. Ceulemans, and J.-F. Müller, “Technical Note: vapor pressure estimation methods applied to secondary organic aerosol constituents from α-pinene oxidation: an intercomparison study,” Atmospheric Chemistry and Physics, vol. 10, no. 13, pp. 6271–6282, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. H. Barley and G. McFiggans, “The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol,” Atmospheric Chemistry and Physics, vol. 10, no. 2, pp. 749–767, 2010. View at Scopus
  22. L. E. Yu, M. L. Shulman, R. Kopperud, and L. M. Hildemann, “Characterization of organic compounds collected during Southeastern Aerosol and Visibility Study: water-soluble organic species,” Environmental Science and Technology, vol. 39, no. 3, pp. 707–715, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Jang and R. M. Kamens, “Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene,” Environmental Science and Technology, vol. 35, no. 18, pp. 3626–3639, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. W. E. Asher, J. F. Pankow, G. B. Erdakos, and J. H. Seinfeld, “Estimating the vapor pressures of multi-functional oxygen-containing organic compounds using group contribution methods,” Atmospheric Environment, vol. 36, no. 9, pp. 1483–1498, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. D. R. Lide, Handbook of Chemistry and Physics, 86th edition, 1997.
  26. C. L. Yams, Hanbook of Vapour Pressure, Vols. 2 and 3, Guef Publishing Compagny, Houston, Tex, USA, 1994.
  27. T. Boulik, V. Freid, and E. Hala, The Vapour Pressure of Pure Substances, Elsevier, Amsterdam, The Netherlands, 1984.
  28. K. J. Joback and R. C. Reid, “Estimation of pure component properties from group contribution,” Chemical Engineering Communications, vol. 57, pp. 233–243, 1987. View at Publisher · View at Google Scholar
  29. P. W. Bruckmann and H. Willner, “Infrared spectroscopic study of peroxyacetyl nitrate (PAN) and its decomposition products,” Environmental Science and Technology, vol. 17, no. 6, pp. 352–357, 1983. View at Scopus
  30. Y. Nannoolal, Development and critical evaluation of group contribution methods for the estimation of critical properties, liquid vapour pressure and liquid viscosity of organic compounds [Ph.D. thesis], University of Kwazulu Natal, 2006.
  31. P. B. Myrdal, J. F. Krzyzaniak, and S. H. Yalkowsky, “Modified Trouton's rule for predicting the entropy of boiling,” Industrial and Engineering Chemistry Research, vol. 35, no. 5, pp. 1788–1792, 1996. View at Scopus
  32. J. Vidal, Thermodynamique: Application au Génie Chimique et Ãa l'industrie du Pétrolière, Technip, Paris, Farnce, 1997.
  33. E. J. Baum, Chemical Property Estimation-Theory and Application, section 6.3, Lewis, Boca Raton, Fla, USA, 1998.
  34. R. P. Schwarzenbasch, P. M. Gschwend, and D. M. Imboden, Environmental Organic Chemistry, John Wiley & Sons, New York, NY, USA, 2nd edition, 2003.
  35. W. J. Lyman, Environmental Exposure from Chemicals, vol. 1, chapter 2, CRC Press, Boca Raton, Fla, USA, 1985.
  36. S. H. Fishtine, “Reliable latent heats of vaporization,” Environmental Science & Technology, vol. 55, pp. 47–56, 1963.
  37. C. F. Grain, “Vapor pressure,” in Handbook of Chemical Property Estimation Methods, chapter 14, McGraw-Hill, New York, NY, USA, 1982.
  38. B. E. Poling, J. M. Prausnitz, and J. P. O'Connell, The Properties of Gases and Iquids, McGraw-Hill, New York, NY, USA, 5th edition, 2001.
  39. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, McGraw-Hill, New York, NY, USA, 4th edition, 1986.
  40. D. Ambrose and J. Walton, “Vapor pressures up to their critical temperatures of normal alkanes and 1-alkohols,” Pure and Applied Chemistry, vol. 61, pp. 1395–1403, 1989. View at Publisher · View at Google Scholar