About this Journal Submit a Manuscript Table of Contents
International Journal of Geophysics
Volume 2013 (2013), Article ID 651823, 18 pages
http://dx.doi.org/10.1155/2013/651823
Research Article

Field Detection of Microcracks to Define the Nucleation Stage of Earthquake Occurrence

1Risk Control Association, Kanda Hirakawa Chiyoda-ku, Tokyo 101-0027, Japan
2Tierra Tecnica Ltd., Musashimurayama, Tokyo, Japan
3Communication Research Laboratories, Koganei, Tokyo, Japan
4OKI Engineering Co., Ltd., Nerima-ku, Tokyo, Japan

Received 4 July 2013; Revised 21 September 2013; Accepted 28 October 2013

Academic Editor: John P. Makris

Copyright © 2013 Y. Fujinawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Mogi, Earthquake Prediction, Academic Press, Tokyo, Japan, 1985.
  2. T. Rikitake, Earthquake Forecasting and Warning, Tokyo Center for Academic Publications, D. Reidel Publishing, Tokyo, Japan, 1982.
  3. C. H. Scholz, The Mechanics of Earthquake and Faulting, Cambridge University Press, Cambridge, Mass, USA, 2nd edition, 2002.
  4. L. M. Jones and P. Molnar, “Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults,” Journal of Geophysical Research, vol. 84, no. 7, pp. 3596–3608, 1979. View at Scopus
  5. M. Ohnaka, “A shear failure strength law of rock in the brittle-plastic transition regime,” Geophysical Research Letters, vol. 22, no. 1, pp. 25–28, 1995. View at Scopus
  6. K. Maeda, “Time distribution of immediate foreshocks obtained by a stacking method,” Pure and Applied Geophysics, vol. 155, no. 2–4, pp. 381–394, 1999. View at Scopus
  7. D. Sornette and C. Sammis:, “Complex critical exponents from renormalization group theory of Earthquakes: implications for Earthquake predictions,” Journal de Physique I, vol. 5, no. 5, pp. 607–619, 1995.
  8. P. Kapiris, K. Nomicos, G. Antonopoulos et al., “Distinguished seismological and electromagnetic features of the impending global failure: did the 7/9/1999 M5.9 Athens earthquake come with a warning?” Earth, Planets and Space, vol. 57, no. 3, pp. 215–230, 2005. View at Scopus
  9. K. Eftaxias, S. M. Potirakisb, and T. Chelidzec, “On the puzzling feature of the silence of precursory electromagnetic emissions,” http://arxiv.org/abs/1211.5151.
  10. X. Lei, K. Kusunose, M. V. M. S. Rao, O. Nishizawa, and T. Satoh, “Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring,” Journal of Geophysical Research B, vol. 105, no. 3, pp. 6127–6139, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Yoshida, P. Manjgaladze, D. Zilpimiani, M. Ohnaka, and M. Nakatani, “Electromagnetic emissions associated with frictional sliding of rock,” in Electromagnetic Phenomena Related to Earthquake Prediction, M. Hayakawa and Y. Fujinawa, Eds., pp. 307–322, Terrapub, Tokyo, Japan, 1994.
  12. S. Yoshida, O. C. Clint, and P. R. Sammonds, “Electric potential changes prior to shear fracture in dry and saturated rocks,” Geophysical Research Letters, vol. 25, no. 10, pp. 1577–1580, 1998. View at Scopus
  13. S. Yoshida and T. Ogawa, “Electromagnetic emissions from dry and wet granite associated with acoustic emissions,” Journal of Geophysical Research B, vol. 109, no. 9, Article ID B09204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Lei, K. Masuda, O. Nishizawa et al., “Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock,” Journal of Structural Geology, vol. 26, no. 2, pp. 247–258, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Hayakawa and Y. Fujinawa, Eds., Electromagnetic Phenomena Related to Earthquake Prediction, Terra Scientific Publishing Company, Tokyo, Japan, 1994.
  16. M. Hayakawa, Ed., Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquake, Terra Scientific Publishing Company, Tokyo, Japan, 1999.
  17. K. Eftaxias and S. M. Potirakis, “Current challenges for preseismic electromagnetic emissions: shedding light from micro-scale plastic flow, granular packings, phase transitions and self-affinity notion of fracture process,” http://arxiv.org/ftp/arxiv/papers/1301/1301.1045.pdf.
  18. V. P. Drnevich and R. E. Gray, Acoustic Emissions in Geotechnical Engineering Practice, American Society for Testing and Materials (ASTM), Philadelphia, Pa, USA, 1981.
  19. V. A. Morgunov, M. N. Lubashevsky, V. Z. Fubrizius, and Z. E. Fubrizius, “Geoacoustic precursor of Spitak earthquake,” Volcanology and Seismology, vol. 4, pp. 104–107, 1991.
  20. K. Hattori, “Results of acoustic emission observation at Matsushiro station, Japan,” Final Report, International Frontier Research Group on Earthquakes (RIKEN IFREQ), Group Director Seiya Uyeda, 2003.
  21. O. Molchanov, A. Schekotov, M. Solovieva et al., “Near-seismic effects in ULF fields and seismo-acoustic emission: statistics and explanation,” Natural Hazards and Earth System Science, vol. 5, no. 1, pp. 1–10, 2005. View at Scopus
  22. S. K. Park, M. J. S. Johnston, T. R. Madden, F. D. Morgan, and H. F. Morrison, “Electromagnetic precursors to earthquakes in the ulf band: a review of observations and mechanisms,” Reviews of Geophysics, vol. 31, no. 2, pp. 117–132, 1993. View at Scopus
  23. Y. Fujinawa, T. Kumagai, and K. Takahashi, “A study of anomalous underground electric field variations associated with a volcanic eruption,” Geophysical Research Letters, vol. 19, no. 1, pp. 9–12, 1992. View at Scopus
  24. Y. Fujinawa and K. Takahashi, “Electromagnetic radiations associated with major earthquakes,” Physics of the Earth and Planetary Interiors, vol. 105, no. 3-4, pp. 249–259, 1998. View at Scopus
  25. Y. Fujinawa, K. Takahashi, T. Matsumoto et al., “Electric field variations related with seismic swarms,” Bulletin of the Earthquake Research Institute, vol. 76, pp. 391–415, 2001.
  26. Y. Fujinawa, T. Matsumoto, and K. Takahashi, “Modeling confined pressure changes inducing anomalous electromagnetic fields related with earthquakes,” Journal of Applied Geophysics, vol. 49, no. 1-2, pp. 101–110, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Fujinawa and K. Takahashi, “Emission of electromagnetic radiation preceding the Ito seismic swarm of 1989,” Nature, vol. 347, no. 6291, pp. 376–378, 1990. View at Scopus
  28. K. Takahashi, Y. Fujinawa, T. Matsumoto et al., “An anomalous electric field variation with the seismic swarm(1)- underground electric field observation at Hodaka station (1995–1999),” Technical Notes 204, National Research Institute for Earth Science and Disaster Prevention, 2000, http://dil-opac.bosai.go.jp/publication/nied_tech_note/pdf/KJ-01_204.pdf.
  29. B. Nourbehect, Irreversible thermodynamic effects in inhomogeneous media and their applications in certain geoelectric problems [Ph.D. thesis], Massachusetts Institute of Technology, Cambridge, Mass, USA, 1963.
  30. V. Fitterman, “Electrokinetic and magnetic anomalies associated with dilatant regions in a layered Earth,” Journal of Geophysical Research, vol. 83, pp. 5923–5928, 1978.
  31. T. Ishido and J. Muzutani, “Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics,” Journal of Geophysical Research, vol. 86, no. 3, pp. 1763–1775, 1981. View at Scopus
  32. Y. Fujinawa, K. Takahashi, Y. Noda, H. Iitaka, and S. Yazaki, “Remote detection of the electric field change induced at the seismic wave front the start of fault rupturing,” International Journal of Geophysics, vol. 2011, Article ID 752193, 11 pages, 2011. View at Publisher · View at Google Scholar
  33. W. Suzuki, S. Aoi, H. Sekiguchi, and T. Kunugi, “Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9.0) inverted from strong-motion data,” Geophysical Research Letters, vol. 38, no. 7, pp. 1944–8007, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. W.-C. Lai, K.-C. Hsu, C.-L. Shiehu et al., “Evaluation of the effects of ground shaking and static volumetric strain change on earthquake-related groundwater level changes in Taiwan,” Earth, Planets and Space, vol. 62, no. 4, pp. 391–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Nagao, Y. Orihara, T. Yamaguchi et al., “Co-seismic geoelectric potential changes observed in Japan,” Geophysical Research Letters, vol. 27, no. 10, pp. 1535–1538, 2000. View at Scopus
  36. A. Revil and G. Saracco, “The volcano-electric effect,” Journal of Geophysical Research, vol. 108, pp. 2251–2270, 2003.
  37. P. Han, Investigation of ULF seismo-magnetic phenomena in Kanto, Japan during 2000–2010 [Ph.D. thesis], Chiba University, 2012.
  38. J. R. Moore and S. D. Glaser, “Self-potential observations during hydraulic fracturing,” Journal of Geophysical Research, vol. 112, Article ID B02204, 2007. View at Publisher · View at Google Scholar
  39. M. A. Fenoglio, M. J. S. Johnston, and J. D. Byerlee, “Magnetic and electric fields associated with changes in high pore pressure in fault zones: application to the Loma Prieta ULF emissions,” Journal of Geophysical Research, vol. 100, no. 7, pp. 12951–12958, 1995. View at Scopus
  40. A. C. Fraser-Smith, A. Bernardi, P. R. McGill, M. E. Ladd, R. A. Helliwell, and O. G. Villard Jr., “Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake,” Geophysical Research Letters, vol. 17, no. 9, pp. 1465–1468, 1990. View at Publisher · View at Google Scholar · View at Scopus
  41. E. J. Sellers, M. O. Kataka, and L. M. Linzer, “Source parameters of acoustic emission events and scaling with mining-induced seismicity,” Journal of Geophysical Research B, vol. 108, no. 9, pp. 1–16, 2003. View at Scopus
  42. N. E. Timms, D. Healy, J. M. Reyes-Montes, D. S. Collins, D. J. Prior, and R. P. Young, “Effects of crystallographic anisotropy on fracture development and acoustic emission in quartz,” Journal of Geophysical Research, vol. 115, Article ID B07202, 2010. View at Publisher · View at Google Scholar
  43. X. Lei, K. Kusunose, M. V. M. S. Rao, O. Nishizawa, and T. Satoh, “Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring,” Journal of Geophysical Research B, vol. 105, no. 3, pp. 6127–6139, 2000. View at Scopus
  44. D. J. Varnes, “Predicting earthquakes by analyzing accelerating precursory seismic activity,” Pure and Applied Geophysics, vol. 130, no. 4, pp. 661–686, 1989. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Yoshioka and C. H. Scholz, “Elastic properties of contacting surfaces under normal and shear loads: 2. Comparison of theory with experiment,” Journal of Geophysical Research B, vol. 94, no. 12, pp. 17691–17700, 1989. View at Publisher · View at Google Scholar
  46. Y. Fujinawa, K. Takahashi, T. Matsumoto, and N. Kawakami, “Experiments to locate sources of earthquake-related VLF electromagnetic signals,” Proceedings of the Japan Academy B, vol. 73, no. 3, pp. 33–38, 1997. View at Scopus
  47. M. Parrot, D. Benoist, J. J. Berthelier et al., “The magnetic field experiment IMSC and its data processing onboard DEMETER: scientific objectives, description and first results,” Planetary and Space Science, vol. 54, no. 5, pp. 441–455, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. O. Hasegawa, Y. Hosokawa, T. Mori, A. Takeichi, and H. Fujii, “Application of AE monitoring for rock burst and rock noise phenomenon under tunnel construction,” Japan Civil Engineering Society, 2008.
  49. N. Gershenzon and G. Bambakidis, “Modeling of seismo-electromagnetic phenomena,” Russian Journal of Earth Sciences, vol. 3, no. 4, pp. 247–275, 2001.
  50. S. Pride, “Governing equations for the coupled electromagnetics and acoustics of porous media,” Physical Review B, vol. 50, no. 21, pp. 15678–15696, 1994. View at Publisher · View at Google Scholar · View at Scopus
  51. M. W. Haartsen and S. R. Pride, “Electroseismic waves from point sources in layered media,” Journal of Geophysical Research B, vol. 102, no. 11, pp. 24745–24769, 1997. View at Scopus
  52. A. H. Araji, A. Revil, A. Jardani, B. J. Minsley, and M. Karaoulis, “Imaging with cross-hole seismoelectric tomography,” Geophysical Journal International, vol. 188, no. 3, pp. 1285–1302, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. F. C. Schoemaker, N. Grobbe, M. D. Schakel, S. A. L. de Ridder, E. C. Slob, and D. M. J. Smeulders, “Experimental validation of the electrokinetic theory and development of seismoelectric interferometry by cross-correlation,” International Journal of Geophysics, vol. 2012, Article ID 514242, 23 pages, 2012. View at Publisher · View at Google Scholar
  54. Y. Gao and H. Hu, “Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium,” Geophysical Journal International, vol. 181, no. 2, pp. 873–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Huang, H. Saleur, and D. Sornette, “Reexamination of log periodicity observed in the seismic precursors of the 1989 Loma Prieta earthquake,” Journal of Geophysical Research B, vol. 105, no. 12, pp. 28111–28123, 2000. View at Scopus
  56. H. X. Ren, X. F. Chen, and Q. H. Huang, “Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media,” Geophysical Journal International, vol. 188, no. 3, pp. 925–944, 2012. View at Publisher · View at Google Scholar
  57. Y. Honkura, M. Matsushima, Ş. Barış et al., “Rapid changes in the electrical state of the 1999 Izmit earthquake rupture zone,” Nature Communications, vol. 4, article 2116, 2013. View at Publisher · View at Google Scholar