About this Journal Submit a Manuscript Table of Contents
International Journal of Geophysics
Volume 2013 (2013), Article ID 986202, 34 pages
http://dx.doi.org/10.1155/2013/986202
Research Article

Soft Schemes for Earthquake-Geotechnical Dilemmas

Geotechnical Department, Institute of Engineering, National University of Mexico, Mexico

Received 27 November 2012; Revised 17 March 2013; Accepted 25 March 2013

Academic Editor: Marek Grad

Copyright © 2013 Silvia García. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. P. S. Kumar, K. P. Sudheer, S. K. Jain, and P. K. Agarwal, “Rainfall-runoff modelling using artificial neural networks: comparison of network types,” Hydrological Processes, vol. 19, no. 6, pp. 1277–1291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. C. Bezdek and R. J. Hathaway, “Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm,” IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 787–793, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965. View at Scopus
  4. L. A. Zadeh, “The roles of fuzzy logic and soft computing in the conception, design and deployment of intelligent systems,” BT Technology Journal, vol. 14, no. 4, pp. 32–36, 1994. View at Scopus
  5. R. Aliev, K. Bonfig, and F. Aliew, Soft Computing, Technic, Berlin, Germany, 2000.
  6. L. A. Zadeh, “Foreword,” in Proceedings of the 1st European Congress on Intelligent Techniques and Soft Computing (EUFIT '95), p. 7, 1995.
  7. L. A. Zadeh, “Soft computing and fuzzy logic,” IEEE Software, vol. 11, no. 6, pp. 48–56, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. R. A. Aliev, “Fuzzy expert systems,” in Soft Computing: Fuzzy Logic, Neural Networks, and Distributed Artificial Intelligence, F. Aminzadeh and M. Jamshidi, Eds., pp. 99–108, Prentice Hall, Englewood Cliffs, NJ, USA, 1994.
  9. L. A. Zadeh, “Fuzzy logic, neural networks, and soft computing,” Communications of the ACM, vol. 37, no. 3, pp. 77–84, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Nauck, F. Klawonn, and R. Kruse, Foundations of Neuro-Fuzzy Systems, John Wiley and Sons, New York, NY, USA, 1997.
  11. M. H. Hassoun, Fundamentals of Artificial Neural Networks, MIT Press, Cambridge, Mass, USA, 1995.
  12. S. Haykin, Neural Networks: A Comprehensive Foundation, Marmillau and IEEE Computer Society, 1994.
  13. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, Mass, USA, 1989.
  14. K. Murawski, T. Arciszewski, and K. de Jong, “Evolutionary computation in structural design,” Engineering with Computers, vol. 16, no. 3-4, pp. 275–286, 2000. View at Scopus
  15. G. P. Huijzer, Quantitative penetrostratigraphic classification [Ph.D. thesis], Amsterdam Free University, 1992.
  16. A. Coerts, Analysis of the static cone penetration test data for subsurface modelling: a methodology [Ph.D. thesis], Utrecht University, The Netherlands, 1996.
  17. C. H. Juang, T. Jiang, and R. A. Christopher, “Three-dimensional site characterisation: neural network approach,” Geotechnique, vol. 51, no. 9, pp. 799–809, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. S. R. García and M. P. Romo, “Sistema de información geográfica y redes neuronales,” in Proceedings of the Reunión Nacional de Mecánica de Suelos, Guadalajara, Mexico, November 2004.
  19. R. R. Youngs, S. J. Chiou, W. J. Silva, and J. R. Humphrey, “Strong ground motion attenuation relationships for subduction zone earthquakes,” Seismological Research Letters, vol. 68, no. 1, pp. 58–73, 1997. View at Scopus
  20. G. M. Atkinson and D. M. Boore, “Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions,” Bulletin of the Seismological Society of America, vol. 93, no. 4, pp. 1703–1729, 2003. View at Scopus
  21. American Society of Civil Engineers (ASCE), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC, USA, 2000.
  22. D. Gasparini and E. H. Vanmarcke, SIMQKE: A Program for Artificial Motion Generation, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Mass, USA, 1976.
  23. J. G. Anderson, “Nonparametric description of peak acceleration above a subduction thrust,” Seismological Research Letters, vol. 68, no. 1, pp. 86–93, 1997. View at Scopus
  24. C. B. Crouse, “Ground motion attenuation equations for earthquakes on the Cascadia subduction zone,” Earthquake Spectra, vol. 7, pp. 210–236, 1991.
  25. S. K. Singh, M. Ordaz, M. Rodriguez et al., “Analysis of near-source strong-motion recordings along the Mexican subduction zone,” Bulletin of the Seismological Society of America, vol. 79, no. 6, pp. 1697–1717, 1989. View at Scopus
  26. C. B. Crouse, Y. K. Vyas, and B. A. Schell, “Ground motions from subduction-zone earthquakes,” Bulletin of the Seismological Society of America, vol. 78, no. 1, pp. 1–25, 1988. View at Scopus
  27. S. K. Singh, E. Mena, R. Castro, and C. Carmona, “Empirical prediction of ground motion in Mexico City from coastal earthquakes,” Bulletin of the Seismological Society of America, vol. 77, pp. 1862–1867, 1987.
  28. K. Sadigh, “Ground motion characteristics for earthquakes originating in subduction zones and in the western United States,” in Proceedings of the 6th Pan American Conference, Lima, Peru, 1979.
  29. E. M. Scordilis, “Empirical global relations converting MS and mb to moment magnitude,” Journal of Seismology, vol. 10, no. 2, pp. 225–236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. B. W. Tichelaar and L. J. Ruff, “Depth of seismic coupling along subduction zones,” Journal of Geophysical Research, vol. 98, no. 2, pp. 2017–2037, 1993. View at Scopus
  31. G. M. Atkinson and D. M. Boore, “Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions,” Bulletin of the Seismological Society of America, vol. 93, no. 4, pp. 1703–1729, 2003. View at Scopus
  32. S. E. Fahlman, “Fast learning variations on back-propagation: an empirical study,” in Proceedings of the Connectionist Models Summer School, D. Touretzky, G. Hinton, and T. Sejnowski, Eds., pp. 38–51, Morgan Kaufmann, San Mateo, Calif, USA, 1988.
  33. S. R. García, M. P. Romo, M. J. Mendoza, and V. M. Taboada-Urtuzuástegui, Sand Behavior Modeling Using Static and Dynamic Artificial Neural Networks, Series de Investigación y Desarrollo del Instituto de Ingeniería SID/631, 2002.
  34. K. W. Campbell, “Predicting strong ground motions in Utah, given in the paper measurement, characterization, and prediction of strong ground motion,” in Earthquake Engineering and Soil Dynamics II-Recent Advances in Ground-Motion Evaluation, W. B. Joyner and D. M. Boore, Eds., pp. 43–102, 1988.
  35. F. Sabetta and A. Pugliese, “Attenuation of peak horizontal acceleration and velocity from Italian strongmotion records,” Bulletin of the Seismological Society of America, vol. 77, pp. 1491–1513, 1987.
  36. S. C. Gómez, M. Ordaz, and C. Tena, “Leyes de atenuación en desplazamiento y aceleración para el diseño sísmico de estructuras con aislamiento en la costa del Pacífico,” in Memorias del XV Congreso Nacional de Ingeniería Sísimica, Morelia, Mexico, November 2005.
  37. W. Silva and K. Lee, State-of-the-Art for Assessing Earthquake Hazards in the United States, Report 24, ES RASCAL Code for Synthesizing Earthquake Ground Motions, Miscellaneous Paper S-73-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss, USA, 1987.
  38. B. A. Bolt and N. J. Gregor, “Synthesized strong ground motions for the seismic condition assessment of the eastern portion of the San Francisco Bay Bridge,” Tech. Rep. UCB/EERC-93/12, University of California, Earthquake Engineering Research Center, Berkeley, Calif, USA, 1993.
  39. J. E. Carballo and C. A. Cornell, “Probabilistic seismic demand analysis: spectrum matching and design,” Tech. Rep. RMS-41, Department of Civil and Environmental Engineering, Stanford University, 2000.
  40. C. Kircher, Personal Communication with Farzad Naeim and Marshall Lew. Levy, S., 1992, Artificial Life, Vintage Books, New York, NY, USA, 1993.
  41. F. Naeim and J. M. Kelly, Design of Seismic Isolated Structures-from Theory to Practice, John Wiley and Sons, New York, NY, USA, 1999.
  42. N. E. Huang, S. Zheng, S. R. Long et al., “The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proceedings of the Royal Society A, vol. 454, pp. 903–995, 1998. View at Publisher · View at Google Scholar
  43. S. Garcia, M. Romo, F. Correa, and M. Ortega, “Hilbert-Huang spectral analysis of seismic ground response,” in Proceedings of the 8th National Conference on Earthquake Engineering (NCEE '06), San Francisco, Calif, USA, 2006, paper no. 1647.
  44. G. Castro, S. J. Poulos, J. W. France, and J. L. Enos, “Liquefaction induced by cyclic loading,” Tech. Rep., Geotechnical Engineers Inc., National Science Foundation, Washington, DC, USA, 1982.
  45. H. B. Seed, I. M. Idris, and I. Arango, “Evaluation of liquefaction potential using field performance data,” Journal of Geotechnical Engineering, vol. 109, no. 3, pp. 458–482, 1983. View at Scopus
  46. H. B. Seed and I. M. Idriss, “Simplified procedure for evaluating soil liquefaction potential,” Journal of the Geotechnical Engineering Division, vol. 97, no. 9, pp. 1249–1273, 1971. View at Scopus
  47. J. H. Hwang and C. W. Yang, “Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data,” Soil Dynamics and Earthquake Engineering, vol. 21, no. 3, pp. 237–257, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. A. T. C. Goh, “Seismic liquefaction potential assessed by neural networks,” Journal of Geotechnical Engineering, vol. 120, no. 9, pp. 1467–1480, 1994. View at Scopus
  49. A. T. C. Goh, “Neural-network modeling of CPT seismic liquefaction data,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 122, no. 1, pp. 70–73, 1996. View at Scopus
  50. A. T. C. Goh, “Probabilistic neural network for evaluating seismic liquefaction potential,” Canadian Geotechnical Journal, vol. 39, pp. 219–232, 2002. View at Publisher · View at Google Scholar
  51. C. H. Juang and C. J. Chen, “CPT-based liquefaction evaluation using artificial neural networks,” Computer-Aided Civil and Infrastructure Engineering, vol. 14, no. 3, pp. 221–229, 1999. View at Publisher · View at Google Scholar
  52. M. H. Baziar and N. Nilipour, “Evaluation of liquefaction potential using neural-networks and CPT results,” Soil Dynamics and Earthquake Engineering, vol. 23, no. 7, pp. 631–636, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. C. J. Lee and T. K. Hsiung, “Applying neural network model in seismic liquefaction case analysis: probabilistic neural network model v.s. multilayer perceptrons model,” in Proceedings of the 2nd Joint International Conference on Soft Computing and Intelligent Systems and 5th International Symposium on Advanced Intelligent Systems, Yokohama, Japan, 2004.
  54. C. H. Juang, C. J. Chen, T. Jiang, and R. D. Andrue, “Risk-based liquefaction potential evaluation using standard penetration tests,” Canadian Geotechnical Journal, vol. 37, pp. 1195–1208, 2000. View at Publisher · View at Google Scholar
  55. E. Hunt, Concept Learning: An Information Processing Problem, Wiley, New York, NY, USA, 1962.
  56. P. Winston, “Learning structural descriptions from examples,” in The Psychology of Computer Vision, P. H. Winston, Ed., McGraw-Hill, 1975.
  57. E. Feigenbaum and H. Simon, “Performance of a reading task by an elementary perceiving and memorizing program,” Behavioral Science, vol. 8, no. 1, pp. 72–76, 1963. View at Publisher · View at Google Scholar
  58. B. G. Buchanan and T. M. Mitchell, “Model-directed learning of production rules,” in Pattern Directed Inference Systems, D. A. Waterman and F. Hayes-Roth, Eds., Academic Press, 1978.
  59. C. H. Juang and T. Jiang, “Assessing probabilistic methods for liquefaction potential evaluation,” in Soil Dynamics and Liquefaction 2000, R. Y. S. Pak and J. Yamamura, Eds., Geotechnical Special Publication no. 107, pp. 148–162, American Society of Civil Engineers, 2000.
  60. R. D. Andrus, K. H. Stokoe II, and R. M. Chung, Draft Guidelines for Evaluating Liquefaction Resistance Using Shear Wave Velocity Measurements and Simplified Procedures, NISTIR, 6277, National Institute of Standards and Technology, Gaithersburg, Md, USA, 1999.
  61. H. B. Seed and I. M. Idriss, “Simplified procedure for evaluating soil liquefaction potential,” Journal of the Soil Mechanics and Foundations Division, vol. 97, no. 9, pp. 1249–1273, 1971. View at Scopus
  62. T. L. Youd, I. M. Idriss, R. D. Andrus et al., “Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, no. 10, pp. 817–833, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. P. K. Robertson and C. E. Wride, “Evaluating cyclic liquefaction potential using the cone penetration test,” Canadian Geotechnical Journal, vol. 35, no. 3, pp. 442–459, 1998. View at Scopus
  64. T. L. Youd, “Geologic effects-liquefaction and associated ground failure,” in Proceedings of the Geologic and Hydraulic Hazards Training Program, Open File Report 84-760, pp. 210–232, US Geological Survey, Menlo Park, Calif, USA, 1984.
  65. K. Tokida, H. Iwasaki, H. Matsumoto, and T. Hamada, “Liquefaction potential and drag force acting on piles in flowing soils,” Soil Dynamics and Earthquake Engineering, vol. 1, pp. 244–259, 1993.
  66. W. Vargas and I. Towhata, “Measurement of drag exerted by liquefied sand on buried pipe,” in Proceedings of the 1st International Conference on Earthquake Geotechnical Engineering, pp. 975–980, Tokyo, Japan, 1995.
  67. S. K. Haigh and S. P. G. Madabhushi, “The effects of pile flexibility on pile-loading in laterally spreading slopes,” in Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, Geotechnical Special Publication no. 145, pp. 24–37, ASCE and GEO-Institute, 2005. View at Scopus
  68. S. F. Bartlett and T. L. Youd, “Empirical prediction of liquefactiion-induced lateral spread,” Journal of Geotechnical Engineering, vol. 121, no. 4, pp. 316–329, 1995. View at Scopus
  69. J. B. Berrill, S. A. Christensen, R. J. Kenan, W. Okada, and J. R. Pettiga, “Lateral spreading loads on pile bridge foundation,” in Proceedings on Soil Behavior of Ground and Geotechnical Structures, S. E. Pinto, Ed., vol. 2, pp. 173–187, Balkema, Rotterdam, The Netherlands, 1997.
  70. E. Ovando, L. Vieitez, and J. D. Alemán, “Geotecnia, El Macrosismo de Manzanillo del 9 de octubre de 1995,” in Sociedad Mexicana de Ingenieria Sismica, A. Tena, Ed., pp. 82–133, Universidad de Colima, Colima, Mexico, 1997.
  71. E. Ovando and M. P. Romo, “Three recent damaging earthquakes in Mexico, special lecture,” in Proceedings of the 5th International Conference on Case Histories in Geotechcnical Engineering, New York, NY, USA, April 2004.
  72. T. L. Youd, C. M. Hansen, and S. F. Bartlett, “Revised multilinear regression equations for prediction of lateral spread displacement,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 128, no. 12, pp. 1007–1017, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. S. R. García and M. P. Romo, “Analytical and neurogenetic methods to estimate in situ rockfill dam dynamic properties,” in Estado del Arte, Ingeniería Geosísmica, XXIV Reunión Nacional de Mecánica de Suelos, pp. 45–55, Aguascalientes, Mexico, November 2008.
  74. M. P. Romo and S. R. Garcia, Prediction of Liquefaction-Induced Lateral Spread: A Neurofuzzy Procedure, Serie Investigación y Desarrollo, Instituto de Ingenieria, UNAM, SID/651, Agosto, 2006, http://www.iingen.unam.mx/.