About this Journal Submit a Manuscript Table of Contents
International Journal of Hypertension
Volume 2013 (2013), Article ID 156179, 7 pages
http://dx.doi.org/10.1155/2013/156179
Research Article

The Brain-Heart Connection: Frontal Cortex and Left Ventricle Angiotensinase Activities in Control and Captopril-Treated Hypertensive Rats—A Bilateral Study

1Unit of Physiology, University of Jaén, 23071 Jaén, Spain
2Institute of Neuroscience “Federico Oloriz”, University of Granada, 18012 Granada, Spain

Received 20 October 2012; Accepted 4 January 2013

Academic Editor: Patrick Vanderheyden

Copyright © 2013 Ana B. Segarra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. F. Thayer and R. D. Lane, “Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration,” Neuroscience and Biobehavioral Reviews, vol. 33, no. 2, pp. 81–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. P. S. Foster and D. W. Harrison, “Magnitude of cerebral asymmetry at rest: covariation with baseline cardiovascular activity,” Brain and Cognition, vol. 61, no. 3, pp. 286–297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Ramírez, I. Prieto, F. Vives, M. de Gasparo, and F. Alba, “Neuropeptides, neuropeptidases and brain asymmetry,” Current Protein and Peptide Science, vol. 5, no. 6, pp. 497–506, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. B. Segarra, I. Prieto, I. Banegas et al., “Asymmetrical effect of captopril on the angiotensinase activity in frontal cortex and plasma of the spontaneously hypertensive rats: expanding the model of neuroendocrine integration,” Behavioural Brain Research, vol. 230, no. 2, pp. 423–427, 2012. View at Publisher · View at Google Scholar
  5. M. A. Samuels, “The brain-heart connection,” Circulation, vol. 116, no. 1, pp. 77–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. F. Thayer and J. F. Brosschot, “Psychosomatics and psychopathology: looking up and down from the brain,” Psychoneuroendocrinology, vol. 30, no. 10, pp. 1050–1058, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. F. Thayer and R. D. Lane, “The role of vagal function in the risk for cardiovascular disease and mortality,” Biological Psychology, vol. 74, no. 2, pp. 224–242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Hilz, O. Devinsky, H. Szczepanska, J. C. Borod, H. Marthol, and M. Tutaj, “Right ventromedial prefrontal lesions result in paradoxical cardiovascular activation with emotional stimuli,” Brain, vol. 129, no. 12, pp. 3343–3355, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Ramírez, I. Prieto, F. Alba, F. Vives, I. Banegas, and M. de Gasparo, “Role of central and peripheral aminopeptidase activities in the control of blood pressure: a working hypothesis,” Heart Failure Reviews, vol. 13, no. 3, pp. 339–353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Prieto, F. Hermoso, M. De Gasparo et al., “Aminopeptidase activity in renovascular hypertension,” Medical Science Monitor, vol. 9, no. 1, pp. BR31–BR36, 2003. View at Scopus
  11. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, London, UK, 4th edition, 1998.
  12. A. B. Segarra, J. I. Ruiz-Sanz, M. B. Ruiz-Larrea et al., “The profile of fatty acids in frontal cortex of rats depends on the type of fat used in the diet and correlates with neuropeptidase activities,” Hormone and Metabolic Research, vol. 43, no. 2, pp. 86–91, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. W. C. De Mello and E. D. Frohlich, “On the local cardiac renin angiotensin system. Basic and clinical implications,” Peptides, vol. 32, no. 8, pp. 1774–1779, 2011. View at Publisher · View at Google Scholar
  14. J. Patil, S. Stucki, J. Nussberger et al., “Angiotensinergic and noradrenergic neurons in the rat and human heart,” Regulatory Peptides, vol. 167, no. 1, pp. 31–41, 2011. View at Publisher · View at Google Scholar
  15. G. O. A. Naik, G. W. Moe, and P. W. Armstrong, “Specific and non-specific measurements of tissue angiotensin II cascade members,” Journal of Pharmaceutical and Biomedical Analysis, vol. 24, no. 5-6, pp. 947–955, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. B. K. Slinker, Y. Wu, A. J. Brennan, K. B. Campbell, and J. W. Harding, “Angiotensin IV has mixed effects on left ventricle systolic function and speeds relaxation,” Cardiovascular Research, vol. 42, no. 3, pp. 660–669, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. A. L. Albiston, S. G. McDowall, D. Matsacos et al., “Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase,” Journal of Biological Chemistry, vol. 276, no. 52, pp. 48623–48626, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. A. L. Albiston, R. N. Fernando, H. R. Yeatman et al., “Gene knockout of insulin-regulated aminopeptidase: loss of the specific binding site for angiotensin IV and age-related deficit in spatial memory,” Neurobiology of Learning and Memory, vol. 93, no. 1, pp. 19–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Pham, A. L. Albiston, C. E. Downes et al., “Insulin-regulated aminopeptidase deficiency provides protection against ischemic stroke in mice,” Journal of Neurotrauma, vol. 29, no. 6, pp. 1243–1248, 2012. View at Publisher · View at Google Scholar
  20. B. Stragier, D. De Bundel, S. Sarre et al., “Involvement of insulin-regulated aminopeptidase in the effects of the renin-angiotensin fragment angiotensin IV: a review,” Heart Failure Reviews, vol. 13, no. 3, pp. 321–337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. D. Li, E. R. Block, and J. M. Patel, “Activation of multiple signaling modules is critical in angiotensin IV-induced lung endothelial cell proliferation,” American Journal of Physiology, vol. 283, no. 4, pp. L707–L716, 2002. View at Scopus
  22. J. W. Wright and J. W. Harding, “Brain renin-angiotensin-A new look at an old system,” Progress in Neurobiology, vol. 95, no. 1, pp. 49–67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Ramírez, I. Banegas, A. B. Segarra, et al., “Bilateral distribution of oxytocinase activity in the medial prefrontal cortex of spontaneously hypertensive rats with experimental hemiparkinsonism,” in Mechanisms in Parkinson's Disease—Models and Treatments, J. Dushanova, Ed., InTech, 2012. View at Publisher · View at Google Scholar
  24. S. Petersen, M. Bähr, and J. Eckel, “Insulin-dependent regulation of Glut4 gene expression in ventricular cardiomyocytes: evidence for a direct effect on Glut4 transcription,” Biochemical and Biophysical Research Communications, vol. 213, no. 2, pp. 533–540, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Randsbaek, H. H. Kimose, T. Bjerre, U. Møldrup, H. E. Bøtker, and T. T. Nielsen, “Captopril-induced glutamate release at the start of reperfusion after cold cardioplegic storage of pig hearts,” Journal of Thoracic and Cardiovascular Surgery, vol. 119, no. 5, pp. 1030–1038, 2000. View at Scopus
  26. I. Banegas, I. Prieto, F. Vives et al., “Asymmetrical response of aminopeptidase A and nitric oxide in plasma of normotensive and hypertensive rats with experimental hemiparkinsonism,” Neuropharmacology, vol. 56, no. 3, pp. 573–579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Banegas, I. Prieto, F. Vives et al., “Lateralized response of oxytocinase activity in the medial prefrontal cortex of a unilateral rat model of Parkinson's disease,” Behavioural Brain Research, vol. 213, no. 2, pp. 328–331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Banegas, I. Prieto, A. B. Segarra et al., “Blood pressure increased dramatically in hypertensive rats after left hemisphere lesions with 6-hydroxydopamine,” Neuroscience Letters, vol. 500, no. 2, pp. 148–150, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. J. T. Chi, H. Y. Chang, G. Haraldsen et al., “Endothelial cell diversity revealed by global expression profiling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 10623–10628, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Bohlender and H. Imboden, “Angiotensinergic neurotransmission in the peripheral autonomic nervous system,” Frontiers in Bioscience, vol. 17, no. 7, pp. 2419–2432, 2011. View at Publisher · View at Google Scholar
  31. A. L. M. Swislocki, T. L. Kinney Lapier, D. T. Khuu, K. Y. Fann, M. Tait, and K. J. Rodnick, “Metabolic, hemodynamic, and cardiac effects of captopril in young, spontaneously hypertensive rats,” American Journal of Hypertension, vol. 12, no. 6, pp. 581–589, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. J. J. Braszko, W. Karwowska-Polecka, D. Halicka, and P. R. Gard, “Captopril and enalapril improve cognition and depressed mood in hypertensive patients,” Journal of Basic and Clinical Physiology and Pharmacology, vol. 14, no. 4, pp. 323–343, 2003. View at Scopus
  33. C. Demers, A. Mody, K. K. Teo, and R. S. McKelvie, “ACE inhibitors in heart failure: what more do we need to know?” American Journal of Cardiovascular Drugs, vol. 5, no. 6, pp. 351–359, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. M. Oppenheimer, A. Gelb, J. P. Girvin, and V. C. Hachinski, “Cardiovascular effects of human insular cortex stimulation,” Neurology, vol. 42, no. 9, pp. 1727–1732, 1992. View at Scopus
  35. F. Colivicchi, A. Bassi, M. Santini, and C. Caltagirone, “Cardiac autonomic derangement and arrhythmias in right-sided stroke with insular involvement,” Stroke, vol. 35, no. 9, pp. 2094–2098, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. H. K. Naver, C. Blomstrand, and B. Gunnar Wallin, “Reduced heart rate variability after right-sided stroke,” Stroke, vol. 27, no. 2, pp. 247–251, 1996. View at Scopus
  37. R. T. F. Cheung and V. Hachinski, “Cardiac effects of stroke,” Current Treatment Options in Cardiovascular Medicine, vol. 6, no. 3, pp. 199–207, 2004. View at Scopus
  38. L. A. Campos, M. Bader, and O. C. Baltatu, “Brain Renin-Angiotensin system in hypertension, cardiac hypertrophy, and heart failure,” Frontiers in Physiology, vol. 2, article 115, 2011.
  39. D. I. Barry, O. B. Paulson, and J. O. Jarden, “Effects of captopril on cerebral blood flow in normotensive and hypertensive rats,” American Journal of Medicine, vol. 76, no. 5, pp. 79–85, 1984. View at Scopus
  40. K. H. Berecek, K. A. Kirk, S. Nagahama, and S. Oparil, “Sympathetic function in spontaneously hypertensive rats after chronic administration of captopril,” American Journal of Physiology, vol. 252, no. 4, part 2, pp. H796–H806, 1987. View at Scopus
  41. G. Vallortigara, “The evolutionary psychology of left and right: costs and benefits of lateralization,” Developmental Psychobiology, vol. 48, no. 6, pp. 418–427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Samara and G. T. Tsangaris, “Brain asymmetry: both sides of the store,” Expert Review of Proteomics, vol. 8, no. 6, pp. 693–703, 2011.
  43. M. E. Rentería, “Cerebral asymmetry: a quantitative, multifactorial, and plastic brain phenotype,” Twin Research and Human Genetics, vol. 15, no. 3, pp. 401–413, 2012. View at Publisher · View at Google Scholar